A single-step low-cost synthesis of tungsten oxide nanostructures by resistive hot wire oxidation

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY CrystEngComm Pub Date : 2024-12-24 DOI:10.1039/D4CE00977K
Krishna KC, Santiago J. Dopico, Janak Paudel, Marvin M. Bonney, Ghusoon J. Ibrahim, Meagan Herbold, Alex J. Kingston, Shawn E. Bourdo, Fumiya Watanabe and John Nichols
{"title":"A single-step low-cost synthesis of tungsten oxide nanostructures by resistive hot wire oxidation","authors":"Krishna KC, Santiago J. Dopico, Janak Paudel, Marvin M. Bonney, Ghusoon J. Ibrahim, Meagan Herbold, Alex J. Kingston, Shawn E. Bourdo, Fumiya Watanabe and John Nichols","doi":"10.1039/D4CE00977K","DOIUrl":null,"url":null,"abstract":"<p >The synthesis of metal oxide nanostructures commonly requires sophisticated scientific apparatus, complex synthesis processes, and time-inefficient processes, or produces undesirable by-products. We have overcome these challenges by developing a low-cost and time-effective synthesis technique that allows considerable control of growth energetics enabling exploration of crystal phases that occupy small regions of phase space. Here, we report on nanostructures of tungsten oxide WO<small><sub>2.76</sub></small> (W<small><sub>17</sub></small>O<small><sub>47</sub></small>) synthesized in a single-step process, which takes roughly one minute to grow WO<small><sub>2.76</sub></small> and an additional roughly 30 min for preparation. The nanostructures were synthesized directly onto tungsten filaments by resistive heating of tungsten wire in an oxygen environment. The nanostructures are rod-shaped with an average diameter of 25 ± 9 nm. Their physical properties were investigated through an arsenal of experimental probes including scanning electron microscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The improved electrochemical performance in comparison to WO<small><sub>3</sub></small> along with its large dielectric constant suggests that despite WO<small><sub>2.76</sub></small> being somewhat elusive to researchers, it demonstrates the potential of this compound for functional applications such as supercapacitors and photocatalytic water splitting.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 4","pages":" 516-522"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce00977k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis of metal oxide nanostructures commonly requires sophisticated scientific apparatus, complex synthesis processes, and time-inefficient processes, or produces undesirable by-products. We have overcome these challenges by developing a low-cost and time-effective synthesis technique that allows considerable control of growth energetics enabling exploration of crystal phases that occupy small regions of phase space. Here, we report on nanostructures of tungsten oxide WO2.76 (W17O47) synthesized in a single-step process, which takes roughly one minute to grow WO2.76 and an additional roughly 30 min for preparation. The nanostructures were synthesized directly onto tungsten filaments by resistive heating of tungsten wire in an oxygen environment. The nanostructures are rod-shaped with an average diameter of 25 ± 9 nm. Their physical properties were investigated through an arsenal of experimental probes including scanning electron microscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The improved electrochemical performance in comparison to WO3 along with its large dielectric constant suggests that despite WO2.76 being somewhat elusive to researchers, it demonstrates the potential of this compound for functional applications such as supercapacitors and photocatalytic water splitting.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电阻热丝氧化法单步低成本合成氧化钨纳米结构
金属氧化物纳米结构的合成通常需要精密的科学设备、复杂的合成工艺和时间效率低的过程,或者产生不良的副产物。我们已经通过开发一种低成本和时间有效的合成技术克服了这些挑战,该技术允许对生长能量进行相当大的控制,从而可以探索占据相空间小区域的晶体相。本文报道了一种单步合成氧化钨WO2.76 (W17O47)纳米结构的方法,其中WO2.76生长大约需要1分钟,制备大约需要30分钟。通过在氧气环境下对钨丝进行电阻加热,直接在钨丝上合成了纳米结构。纳米结构呈棒状,平均直径为25±9 nm。通过扫描电子显微镜、x射线衍射、拉曼光谱、透射电子显微镜、x射线光电子能谱、电化学阻抗谱和循环伏安法等实验探针研究了它们的物理性质。与WO3相比,WO2.76的电化学性能有所提高,同时其介电常数也很大,这表明尽管WO2.76对研究人员来说有些难以捉摸,但它表明了这种化合物在超级电容器和光催化水分解等功能应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
期刊最新文献
Back cover Back cover Non-covalent interactions in solid p-C6F4Cl2 and C6F5Cl. Back cover Expression of concern: The behavior of Ni nanotubes under the influence of environments with different acidities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1