A machine learning approach for estimating supercapacitor performance of graphene oxide nano-ring based electrode materials†

IF 3.2 Q2 CHEMISTRY, PHYSICAL Energy advances Pub Date : 2024-12-05 DOI:10.1039/D4YA00577E
Gaurav Kumar Yogesh, Debabrata Nandi, Rungsima Yeetsorn, Waritnan Wanchan, Chandni Devi, Ravi Pratap Singh, Aditya Vasistha, Mukesh Kumar, Pankaj Koinkar and Kamlesh Yadav
{"title":"A machine learning approach for estimating supercapacitor performance of graphene oxide nano-ring based electrode materials†","authors":"Gaurav Kumar Yogesh, Debabrata Nandi, Rungsima Yeetsorn, Waritnan Wanchan, Chandni Devi, Ravi Pratap Singh, Aditya Vasistha, Mukesh Kumar, Pankaj Koinkar and Kamlesh Yadav","doi":"10.1039/D4YA00577E","DOIUrl":null,"url":null,"abstract":"<p >This work utilizes a novel approach leveraging the machine learning (ML) technique to predict the electrochemical supercapacitor performance of graphene oxide nano-rings (GONs) as electrode nanomaterials. Initially, the experimental procedure was carried out to synthesize GO <em>via</em> a modified Hummers method, followed by GONs preparation using the water-in-oil (W/O) emulsion technique. High-resolution transmission electron microscopy (HRTEM) analysis reveals the formation of a typical two-dimensional GO nanosheet and multilayer-GO nano-rings. The X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET) analysis results show that the GONs possess similar structural and surface chemistry properties as of GO, with a slight reduction in oxygenous functionalities, enhancing the capacitive behaviours through facile electron migration at the electrode surface. The electrochemical assessment of GO and GONs samples indicates outstanding specific capacitances of 164 F g<small><sup>−1</sup></small> and 294 F g<small><sup>−1</sup></small> at 1 mV s<small><sup>−1</sup></small>, showcasing capacitive retention of up to 63% and 60% after 2500 cycles. In addition, four different machine learning models were tested to estimate the role of electrochemical parameters in determining the specific capacitance of GONs.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 1","pages":" 119-139"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00577e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00577e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work utilizes a novel approach leveraging the machine learning (ML) technique to predict the electrochemical supercapacitor performance of graphene oxide nano-rings (GONs) as electrode nanomaterials. Initially, the experimental procedure was carried out to synthesize GO via a modified Hummers method, followed by GONs preparation using the water-in-oil (W/O) emulsion technique. High-resolution transmission electron microscopy (HRTEM) analysis reveals the formation of a typical two-dimensional GO nanosheet and multilayer-GO nano-rings. The X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET) analysis results show that the GONs possess similar structural and surface chemistry properties as of GO, with a slight reduction in oxygenous functionalities, enhancing the capacitive behaviours through facile electron migration at the electrode surface. The electrochemical assessment of GO and GONs samples indicates outstanding specific capacitances of 164 F g−1 and 294 F g−1 at 1 mV s−1, showcasing capacitive retention of up to 63% and 60% after 2500 cycles. In addition, four different machine learning models were tested to estimate the role of electrochemical parameters in determining the specific capacitance of GONs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种估计氧化石墨烯纳米环电极材料超级电容器性能的机器学习方法
这项工作采用了一种新的方法,利用机器学习(ML)技术来预测氧化石墨烯纳米环(GONs)作为电极纳米材料的电化学超级电容器性能。首先,采用改进的Hummers法合成氧化石墨烯,然后采用油包水(W/O)乳液技术制备氧化石墨烯。高分辨率透射电镜(HRTEM)分析揭示了典型的二维氧化石墨烯纳米片和多层氧化石墨烯纳米环的形成。x射线衍射(XRD)、拉曼光谱(Raman)、x射线光电子能谱(XPS)和布鲁诺尔-埃米特-泰勒(BET)分析结果表明,氧化石墨烯具有与氧化石墨烯相似的结构和表面化学性质,但氧官能团略有降低,通过易于在电极表面的电子迁移增强了电容性行为。氧化石墨烯和氧化石墨烯样品的电化学评估表明,在1 mV s−1下,比电容为164 F g−1和294 F g−1,在2500次循环后,电容保持率高达63%和60%。此外,还测试了四种不同的机器学习模型,以估计电化学参数在确定gan比电容中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover Reflecting on another successful year of Energy Advances Composite solid-state electrolytes for all solid-state lithium batteries: progress, challenges and outlook Back cover A machine learning approach for estimating supercapacitor performance of graphene oxide nano-ring based electrode materials†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1