Loose polyamide nanofiltration membranes reinforced with MXene via constrained interfacial polymerization

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science Pub Date : 2025-01-11 DOI:10.1007/s10853-025-10597-z
Yuting Zhang, Jiaxin Ge, Shiqiu Yin, Junjie Peng, Yanyan Qin, Lingdi Shen
{"title":"Loose polyamide nanofiltration membranes reinforced with MXene via constrained interfacial polymerization","authors":"Yuting Zhang,&nbsp;Jiaxin Ge,&nbsp;Shiqiu Yin,&nbsp;Junjie Peng,&nbsp;Yanyan Qin,&nbsp;Lingdi Shen","doi":"10.1007/s10853-025-10597-z","DOIUrl":null,"url":null,"abstract":"<div><p>To achieve loose polyamide (PA)-based nanofiltration membranes with high water permeability and salt selectivity, two-dimensional layered material MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) and piperazine (PIP) were co-deposited onto the surface of polyacrylonitrile (PAN) substrate membranes to facilitate constrained interfacial polymerization (IP) between PIP and trimesoyl chloride (TMC). The negatively charged MXene, rich in oxygen-containing functional groups, adsorbs PIP molecules, thereby constraining the IP process and leading to the formation of an ultra-thin PA/MXene layer with a thickness of less than 100 nm on the PAN substrate. Additionally, MXene nanosheets promote the creation of extra nanochannels between the MXene and PA due to microphase separation. The effects of the mass ratio of MXene to PIP, TMC concentration, and MXene deposition on the nanofiltration performance of the composite membrane were systematically optimized. As a result, the optimized PA/MXene/PAN membrane demonstrates a permeate flux of 152.4 L m⁻<sup>2</sup> h⁻<sup>1</sup> and a rejection rate of 97.2% to sodium sulfate at 0.6 MPa. This outstanding separation performance underscores the significant potential of MXene-assisted IP in developing high-performance PA desalination membranes.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 4","pages":"1905 - 1918"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-10597-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve loose polyamide (PA)-based nanofiltration membranes with high water permeability and salt selectivity, two-dimensional layered material MXene (Ti3C2Tx) and piperazine (PIP) were co-deposited onto the surface of polyacrylonitrile (PAN) substrate membranes to facilitate constrained interfacial polymerization (IP) between PIP and trimesoyl chloride (TMC). The negatively charged MXene, rich in oxygen-containing functional groups, adsorbs PIP molecules, thereby constraining the IP process and leading to the formation of an ultra-thin PA/MXene layer with a thickness of less than 100 nm on the PAN substrate. Additionally, MXene nanosheets promote the creation of extra nanochannels between the MXene and PA due to microphase separation. The effects of the mass ratio of MXene to PIP, TMC concentration, and MXene deposition on the nanofiltration performance of the composite membrane were systematically optimized. As a result, the optimized PA/MXene/PAN membrane demonstrates a permeate flux of 152.4 L m⁻2 h⁻1 and a rejection rate of 97.2% to sodium sulfate at 0.6 MPa. This outstanding separation performance underscores the significant potential of MXene-assisted IP in developing high-performance PA desalination membranes.

Graphical abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
约束界面聚合增强MXene的松散聚酰胺纳滤膜
为了获得具有高水渗透性和高盐选择性的松散聚酰胺(PA)基纳滤膜,将二维层状材料MXene (Ti3C2Tx)和哌嗪(PIP)共沉积在聚丙烯腈(PAN)基膜表面,促进PIP与三聚氯胺(TMC)之间的约束界面聚合(IP)。带负电荷的MXene富含含氧官能团,吸附PIP分子,从而限制了IP过程,导致在PAN衬底上形成厚度小于100 nm的超薄PA/MXene层。此外,由于微相分离,MXene纳米片促进了MXene和PA之间额外纳米通道的产生。系统优化了MXene与PIP的质量比、TMC浓度、MXene沉积对复合膜纳滤性能的影响。结果表明,优化后的PA/MXene/PAN膜的渗透通量为152.4 L m - 2 h - 1,对0.6 MPa的硫酸钠的拒绝率为97.2%。这种出色的分离性能强调了mxene辅助IP在开发高性能PA脱盐膜方面的巨大潜力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
期刊最新文献
Developing new high-entropy alloys with enhanced hardness using a hybrid machine learning approach: integrating interpretability and NSGA-II optimization First-principles computational screening of CO2 gas adsorption by two-dimensional transition metals M2N-MXene Electrospun PEO/PVDF blend solid polymer electrolytes with improved electrochemical performances for lithium metal batteries Tuning the microstructure and strength of Mg–RE alloys through the rare-earth elements Molybdenum disulfide nanosheets and evaluation of their supercapacitor performance via solid-state shear pan-milling method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1