A Novel Facile and Efficient Prophylaxis Avenue of Chitosan Oligosaccharide/PLGA Based Polydatin Loaded Nanoparticles Against Bleomycin-Induced Lung Inflammation in Experimental Rat Model
Ahmed Nashaat Alnagar, Amira Motawea, Randa A. Zaghloul, Mamdouh Eldesoqui, Irhan Ibrahim Abu Hashim
{"title":"A Novel Facile and Efficient Prophylaxis Avenue of Chitosan Oligosaccharide/PLGA Based Polydatin Loaded Nanoparticles Against Bleomycin-Induced Lung Inflammation in Experimental Rat Model","authors":"Ahmed Nashaat Alnagar, Amira Motawea, Randa A. Zaghloul, Mamdouh Eldesoqui, Irhan Ibrahim Abu Hashim","doi":"10.1208/s12249-024-03022-2","DOIUrl":null,"url":null,"abstract":"<div><p>Lung inflammation is a hallmark of several respiratory diseases. Despite the great effectiveness of the synthetic antiinflammatory agents, they cause potential side effects. Polydatin (PD), a natural phytomedicine, has antioxidant and antiinflammatory effects. Its clinical applications are hindered due to poor aqueous solubility, low bioavailability, and rapid metabolism by first-pass effect. Herein, we report the development of a novel chitosan oligosaccharide-coated PD-loaded Poly dl-lactide-co-glycolide nanoparticles (COS-coated PD/PLGA NPs) against a bleomycin-induced pulmonary inflammation in a rat model. The NPs exhibited a small particle size of 188.57 ± 5.68 nm and a high zeta potential of + 18.13 ± 2.75 mV with spherical architecture and sustained release pattern of PD. <i>In vivo</i> studies in bleomycin-induced lung inflammation in a rat model revealed the superior prophylactic activity of COS-coated PD/PLGA NPs over the free drug (PD) as demonstrated by histopathological and immunohistochemical analyses, alongside biochemical assays evaluating oxidative stress biomarkers and inflammatory cytokine levels. Overall, the optimized COS-coated PD/PLGA NPs formulation offers a promising prophylactic platform against many respiratory diseases.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-024-03022-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-03022-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Lung inflammation is a hallmark of several respiratory diseases. Despite the great effectiveness of the synthetic antiinflammatory agents, they cause potential side effects. Polydatin (PD), a natural phytomedicine, has antioxidant and antiinflammatory effects. Its clinical applications are hindered due to poor aqueous solubility, low bioavailability, and rapid metabolism by first-pass effect. Herein, we report the development of a novel chitosan oligosaccharide-coated PD-loaded Poly dl-lactide-co-glycolide nanoparticles (COS-coated PD/PLGA NPs) against a bleomycin-induced pulmonary inflammation in a rat model. The NPs exhibited a small particle size of 188.57 ± 5.68 nm and a high zeta potential of + 18.13 ± 2.75 mV with spherical architecture and sustained release pattern of PD. In vivo studies in bleomycin-induced lung inflammation in a rat model revealed the superior prophylactic activity of COS-coated PD/PLGA NPs over the free drug (PD) as demonstrated by histopathological and immunohistochemical analyses, alongside biochemical assays evaluating oxidative stress biomarkers and inflammatory cytokine levels. Overall, the optimized COS-coated PD/PLGA NPs formulation offers a promising prophylactic platform against many respiratory diseases.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.