{"title":"A sustainable route: from wasted alkaline manganese batteries to high-performance cathode for aqueous zinc ion batteries","authors":"Gaoyao Peng, Xuemin Yan, Zixin Zhu, Qian Wang, Jincheng Liu, Yu Jiang","doi":"10.1007/s11581-024-05904-8","DOIUrl":null,"url":null,"abstract":"<div><p>The recycling complexity of spent alkaline zinc-manganese dry batteries contributes to environmental pollution and suboptimal resource utilization, highlighting the urgent need for the development of streamlined and efficient recycling strategies. Here, we propose to apply the regenerated cathode material of waste alkaline zinc-manganese batteries to aqueous zinc ion batteries (AZIBs), which can be directly recycled selectively in one step by a simple calcination method. The regenerated α-MnO<sub>2</sub> presents a regular nanowire shape with oxygen defects, applied as a cathode for the AZIBs; it can provide a specific capacity of 173.4 mAh g<sup>−1</sup> even after 2000 cycles. This simple recycling strategy for the positive electrodes of spent alkaline zinc-manganese batteries not only reduces the complexity of the recycling process of spent alkaline batteries, but also achieves the purpose of high-value recycling, significantly reducing environmental pollution and resource waste.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 1","pages":"561 - 569"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05904-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The recycling complexity of spent alkaline zinc-manganese dry batteries contributes to environmental pollution and suboptimal resource utilization, highlighting the urgent need for the development of streamlined and efficient recycling strategies. Here, we propose to apply the regenerated cathode material of waste alkaline zinc-manganese batteries to aqueous zinc ion batteries (AZIBs), which can be directly recycled selectively in one step by a simple calcination method. The regenerated α-MnO2 presents a regular nanowire shape with oxygen defects, applied as a cathode for the AZIBs; it can provide a specific capacity of 173.4 mAh g−1 even after 2000 cycles. This simple recycling strategy for the positive electrodes of spent alkaline zinc-manganese batteries not only reduces the complexity of the recycling process of spent alkaline batteries, but also achieves the purpose of high-value recycling, significantly reducing environmental pollution and resource waste.
废旧碱性锌锰干电池回收的复杂性导致了环境污染和资源利用不理想,迫切需要开发精简高效的回收策略。本文提出将废旧碱性锌锰电池的再生正极材料应用于水性锌离子电池,采用简单的煅烧法,一步选择性地直接回收。再生后的α-MnO2呈现出带有氧缺陷的规则纳米线形状,作为azib的阴极;即使经过2000次循环,它也可以提供173.4 mAh g−1的比容量。这种简单的废旧碱性锌锰电池正极回收策略,既降低了废旧碱性电池回收过程的复杂性,又达到了高价值回收的目的,显著减少了环境污染和资源浪费。
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.