Investigation of the oxidation behaviors of G115 steel in deoxygenated ultra-supercritical water at 650 °C

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science Pub Date : 2025-01-03 DOI:10.1007/s10853-024-10494-x
C. G. Shang, Y. M. Han, Y. H. Lu
{"title":"Investigation of the oxidation behaviors of G115 steel in deoxygenated ultra-supercritical water at 650 °C","authors":"C. G. Shang,&nbsp;Y. M. Han,&nbsp;Y. H. Lu","doi":"10.1007/s10853-024-10494-x","DOIUrl":null,"url":null,"abstract":"<div><p>The oxidation behaviors of a new martensite steel G115 were investigated in ultra-supercritical water in this study. After a short-term oxidation (one hour), a double-layer oxide film, including a porous outer layer of Fe<sub>3</sub>O<sub>4</sub> and a thick internal layer, was formed in the surface. The oxidation resistance of Co delayed the complete oxidation of the internal oxide layer, resulting in a thick internal oxide layer. Spinel particles within internal layer exhibited a Baker–Nutting relationship with matrix. Over time, high-angle grain boundaries and Co-rich residual matrix promoted dense Cr-rich oxide layer formation. This Cr-rich layer hindered the inward diffusion of oxygen, causing internal layer to transform into inner layer followed by a renewed internal layer formation. Additionally, the Cr-rich layer hindered the outward diffusion of Fe, thus accelerating the transition of Fe<sub>3</sub>O<sub>4</sub> into Fe<sub>2</sub>O<sub>3</sub>. Cu initially precipitated at the oxide/matrix interface within internal layer, subsequently diffusing beneath the initial Cr-rich layer.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 4","pages":"2027 - 2046"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10494-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The oxidation behaviors of a new martensite steel G115 were investigated in ultra-supercritical water in this study. After a short-term oxidation (one hour), a double-layer oxide film, including a porous outer layer of Fe3O4 and a thick internal layer, was formed in the surface. The oxidation resistance of Co delayed the complete oxidation of the internal oxide layer, resulting in a thick internal oxide layer. Spinel particles within internal layer exhibited a Baker–Nutting relationship with matrix. Over time, high-angle grain boundaries and Co-rich residual matrix promoted dense Cr-rich oxide layer formation. This Cr-rich layer hindered the inward diffusion of oxygen, causing internal layer to transform into inner layer followed by a renewed internal layer formation. Additionally, the Cr-rich layer hindered the outward diffusion of Fe, thus accelerating the transition of Fe3O4 into Fe2O3. Cu initially precipitated at the oxide/matrix interface within internal layer, subsequently diffusing beneath the initial Cr-rich layer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
G115钢在650℃脱氧超超临界水中氧化行为的研究
研究了新型马氏体钢G115在超超临界水中的氧化行为。经过短期氧化(1小时),表面形成双层氧化膜,包括多孔的Fe3O4外层和厚的内层。Co的抗氧化性延缓了内氧化层的完全氧化,导致内氧化层较厚。内层尖晶石颗粒与基体呈贝克-纳特关系。随着时间的推移,高角度晶界和富co残余基体促进了致密富cr氧化层的形成。富cr层阻碍了氧向内扩散,导致内层转变为内层,再形成新的内层。富cr层阻碍了Fe向外扩散,加速了Fe3O4向Fe2O3的转变。Cu最初在内层的氧化物/基体界面析出,随后扩散到初始富cr层下方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
期刊最新文献
Developing new high-entropy alloys with enhanced hardness using a hybrid machine learning approach: integrating interpretability and NSGA-II optimization First-principles computational screening of CO2 gas adsorption by two-dimensional transition metals M2N-MXene Electrospun PEO/PVDF blend solid polymer electrolytes with improved electrochemical performances for lithium metal batteries Tuning the microstructure and strength of Mg–RE alloys through the rare-earth elements Molybdenum disulfide nanosheets and evaluation of their supercapacitor performance via solid-state shear pan-milling method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1