A Reformulation of the Laminar Kinetic Energy Model to Enable Multi-mode Transition Predictions

IF 2 3区 工程技术 Q3 MECHANICS Flow, Turbulence and Combustion Pub Date : 2024-10-08 DOI:10.1007/s10494-024-00590-y
Roberto Pacciani, Yuan Fang, Leonardo Metti, Michele Marconcini, Richard Sandberg
{"title":"A Reformulation of the Laminar Kinetic Energy Model to Enable Multi-mode Transition Predictions","authors":"Roberto Pacciani,&nbsp;Yuan Fang,&nbsp;Leonardo Metti,&nbsp;Michele Marconcini,&nbsp;Richard Sandberg","doi":"10.1007/s10494-024-00590-y","DOIUrl":null,"url":null,"abstract":"<div><p>The paper describes the development of a novel transition/turbulence model based on the laminar kinetic energy concept. The model is intended as a base framework for data-driven improvements. Starting from a previously developed framework, mainly aimed at separated-flow transition predictions, suitable terms for model generalization are identified and reformulated for handling different transition modes, namely bypass and separated-flow modes. The ideology for the definition of new terms has its roots in mixing phenomenological and correlation-based arguments, ensuring generality and flexibility and allowing a variety of lines of action for improving model components via machine-learning approaches. The model calibration, carried out with reference to flat plate test cases subjected to different pressure gradients and freestream turbulence levels, is discussed in detail. Although the constructed model is calibrated on a group of classic flat plat cases, the validation campaign, mostly carried out on gas turbine cascades, demonstrates its ability to predict transitional flows with engineering accuracy. Finally, while the model is not specifically developed for natural transition predictions, satisfactory predictions are obtained in scenarios with low freestream turbulence for flat plate and airfoil flows.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 1","pages":"81 - 116"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-024-00590-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00590-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper describes the development of a novel transition/turbulence model based on the laminar kinetic energy concept. The model is intended as a base framework for data-driven improvements. Starting from a previously developed framework, mainly aimed at separated-flow transition predictions, suitable terms for model generalization are identified and reformulated for handling different transition modes, namely bypass and separated-flow modes. The ideology for the definition of new terms has its roots in mixing phenomenological and correlation-based arguments, ensuring generality and flexibility and allowing a variety of lines of action for improving model components via machine-learning approaches. The model calibration, carried out with reference to flat plate test cases subjected to different pressure gradients and freestream turbulence levels, is discussed in detail. Although the constructed model is calibrated on a group of classic flat plat cases, the validation campaign, mostly carried out on gas turbine cascades, demonstrates its ability to predict transitional flows with engineering accuracy. Finally, while the model is not specifically developed for natural transition predictions, satisfactory predictions are obtained in scenarios with low freestream turbulence for flat plate and airfoil flows.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
层流动能模型的重新表述以实现多模态跃迁预测
本文描述了一种基于层流动能概念的新型过渡/湍流模型的发展。该模型旨在作为数据驱动改进的基础框架。从先前开发的主要针对分离流过渡预测的框架开始,识别并重新制定适合模型泛化的术语,以处理不同的过渡模式,即旁路和分离流模式。新术语定义的意识形态源于混合现象学和基于相关性的论证,确保通用性和灵活性,并允许通过机器学习方法改进模型组件的各种行动线。参考不同压力梯度和自由流湍流水平下的平板试验案例进行了模型校准,并进行了详细讨论。尽管构建的模型是在一组经典的平板案例上进行校准的,但验证活动(主要是在燃气轮机叶栅上进行的)表明,它能够以工程精度预测过渡流动。最后,虽然该模型不是专门为自然过渡预测而开发的,但在平板和翼型流动的低自由流湍流情况下获得了令人满意的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
期刊最新文献
On the Feasibility of a Self-adaptive Strategy for Hybrid RANS/LES Based on Physical Criteria and its Initial Testing on Low Reynolds Number Backward-Facing Step Flow Near-Field Mixing in a Coaxial Dual Swirled Injector Assessment of Thermal Boundary Models for Large Eddy Simulations of Natural Convection Analysis of Droplet Evaporation Dynamics Using Computational Singular Perturbation and Tangential Stretching Rate Assessment of the Partially Stirred Reactor Model for LES in a Swirl-Stabilized Turbulent Premixed Flame
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1