{"title":"Dynamics of a Momentumless Turbulent Wake Behind a Sphere in a Turbulized Stratified Medium","authors":"G. G. Chernykh, A. V. Fomina, N. P. Moshkin","doi":"10.1134/S1810232824040155","DOIUrl":null,"url":null,"abstract":"<p>With application of three-dimensional parabolized system of differential equations including averaged equations of motion in the Oberbeck–Boussinesq approximation and equations for transfer of Reynolds stresses and dissipation rates, a numerical model of the dynamics of a momentumless turbulent wake behind a sphere in a turbulized stratified medium (degenerating external turbulence) was constructed. The components of the mass flow vector and the dispersion of density fluctuations were found from algebraic representations of a locally equilibrium approximation. Numerical simulation of the dynamics of a momentumless turbulent wake behind a sphere and internal waves generated by it in a turbulized linearly stratified medium was performed. The calculation results demonstrate a significant influence of background turbulence on the wake dynamics and internal waves generated by the wake.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 4","pages":"852 - 873"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824040155","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With application of three-dimensional parabolized system of differential equations including averaged equations of motion in the Oberbeck–Boussinesq approximation and equations for transfer of Reynolds stresses and dissipation rates, a numerical model of the dynamics of a momentumless turbulent wake behind a sphere in a turbulized stratified medium (degenerating external turbulence) was constructed. The components of the mass flow vector and the dispersion of density fluctuations were found from algebraic representations of a locally equilibrium approximation. Numerical simulation of the dynamics of a momentumless turbulent wake behind a sphere and internal waves generated by it in a turbulized linearly stratified medium was performed. The calculation results demonstrate a significant influence of background turbulence on the wake dynamics and internal waves generated by the wake.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.