Innovative Stainless-Steel Porous Substrate for Metal-Supported Solid Oxide Fuel Cells

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Engineering Thermophysics Pub Date : 2025-01-17 DOI:10.1134/S1810232824040167
M. R. Alsayedomar, A. G. Laptev, A. M. Dimiev
{"title":"Innovative Stainless-Steel Porous Substrate for Metal-Supported Solid Oxide Fuel Cells","authors":"M. R. Alsayedomar,&nbsp;A. G. Laptev,&nbsp;A. M. Dimiev","doi":"10.1134/S1810232824040167","DOIUrl":null,"url":null,"abstract":"<p>Porous metallic substrate for metal-supported solid oxide fuel cells was developed utilizing stainless-steel powder and triethanolamine as a new binder. Starch was added as an additional agent to increase porosity and gas permeability of the samples. The structure and functional properties of the obtained substrates as the function of the additives content and the processing conditions were investigated. The optimal parameters have been determined. When the combined percentage of the binder and pore-former was raised up to 5%, the porosity and permeability increased up to 46.2% and 3.1 d respectively. As the sintering time of the substrate increased to 6h, the hardness grew up to 311 HRC. A thermal expansion coefficient value of <span>\\(\\sim 14\\times 10^{-6}\\)</span> has been obtained. The results demonstrate how the preparation process affects all of the major parameters, including porosity, permeability, hardness and roughness. Both the content of additives and processing conditions may vary in relatively broad range to attain particular required properties of the substrates. Better to similar properties compared to literature data have been obtained.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 4","pages":"874 - 882"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824040167","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Porous metallic substrate for metal-supported solid oxide fuel cells was developed utilizing stainless-steel powder and triethanolamine as a new binder. Starch was added as an additional agent to increase porosity and gas permeability of the samples. The structure and functional properties of the obtained substrates as the function of the additives content and the processing conditions were investigated. The optimal parameters have been determined. When the combined percentage of the binder and pore-former was raised up to 5%, the porosity and permeability increased up to 46.2% and 3.1 d respectively. As the sintering time of the substrate increased to 6h, the hardness grew up to 311 HRC. A thermal expansion coefficient value of \(\sim 14\times 10^{-6}\) has been obtained. The results demonstrate how the preparation process affects all of the major parameters, including porosity, permeability, hardness and roughness. Both the content of additives and processing conditions may vary in relatively broad range to attain particular required properties of the substrates. Better to similar properties compared to literature data have been obtained.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属支撑固体氧化物燃料电池的创新不锈钢多孔衬底
以不锈钢粉和三乙醇胺为新型粘结剂,研制了用于金属支撑固体氧化物燃料电池的多孔金属衬底。淀粉作为附加剂加入,以增加孔隙度和透气性的样品。考察了添加剂含量和加工条件对所得基体结构和功能性能的影响。确定了最佳工艺参数。当粘结剂和成孔剂的掺量增加到5%时%, the porosity and permeability increased up to 46.2% and 3.1 d respectively. As the sintering time of the substrate increased to 6h, the hardness grew up to 311 HRC. A thermal expansion coefficient value of \(\sim 14\times 10^{-6}\) has been obtained. The results demonstrate how the preparation process affects all of the major parameters, including porosity, permeability, hardness and roughness. Both the content of additives and processing conditions may vary in relatively broad range to attain particular required properties of the substrates. Better to similar properties compared to literature data have been obtained.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Engineering Thermophysics
Journal of Engineering Thermophysics THERMODYNAMICS-ENGINEERING, MECHANICAL
CiteScore
2.30
自引率
12.50%
发文量
0
审稿时长
3 months
期刊介绍: Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.
期刊最新文献
Dynamics of a Momentumless Turbulent Wake Behind a Sphere in a Turbulized Stratified Medium Insights into Significance of Radiative Inclined MHD on Mixed Convective Viscoelastic Flow of Hybrid Nanofluid over a Permeable Surface with Mass Transpiration Innovative Stainless-Steel Porous Substrate for Metal-Supported Solid Oxide Fuel Cells Diagnostics of Boiling Crisis Experimental Research on Combined Methods against Icing of Wind Turbine Blades
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1