Z. Y. Xu, H. S. Fu, Y. Yu, Z. Wang, W. D. Fu, W. Z. Zhang, J. B. Cao
{"title":"The shape of magnetic hole in affecting electron distribution function and wave properties","authors":"Z. Y. Xu, H. S. Fu, Y. Yu, Z. Wang, W. D. Fu, W. Z. Zhang, J. B. Cao","doi":"10.1007/s10509-025-04397-9","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetic holes (MHs) have been widely observed in astrophysical and space plasmas. However, due to the lack of reconstruction method, the effects of MH shape on electron distribution function and wave properties are still unclear. In this study, we report a series of MHs in Earth’s magnetotail. We particularly focus on two of them with the clearest data features, reconstruct their topologies using the Second-Order Taylor Expansion (SOTE) method, and find their shapes to be bulging and deflated. Comparatively, the bulging MH exhibits a donut electron distribution, which may be attributed to the combined effects of internal expansion-induced betatron cooling and boundary contraction-induced betatron acceleration, while the deflated MH presents a pancake electron distribution. The beam instability and temperature anisotropy inside the bulging MH also excite electron cyclotron waves and whistler waves, respectively, while the deflated MH does not exhibit these types of waves. All these findings help us understand the geometric properties and evolutions of MHs.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04397-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic holes (MHs) have been widely observed in astrophysical and space plasmas. However, due to the lack of reconstruction method, the effects of MH shape on electron distribution function and wave properties are still unclear. In this study, we report a series of MHs in Earth’s magnetotail. We particularly focus on two of them with the clearest data features, reconstruct their topologies using the Second-Order Taylor Expansion (SOTE) method, and find their shapes to be bulging and deflated. Comparatively, the bulging MH exhibits a donut electron distribution, which may be attributed to the combined effects of internal expansion-induced betatron cooling and boundary contraction-induced betatron acceleration, while the deflated MH presents a pancake electron distribution. The beam instability and temperature anisotropy inside the bulging MH also excite electron cyclotron waves and whistler waves, respectively, while the deflated MH does not exhibit these types of waves. All these findings help us understand the geometric properties and evolutions of MHs.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.