Comparative Features of the North–South Asymmetry of Solar Activity According to Data on the Number and Magnetic Fluxes of Active Regions of Different Magnetic Morphology in the 23rd and 24th Cycles
{"title":"Comparative Features of the North–South Asymmetry of Solar Activity According to Data on the Number and Magnetic Fluxes of Active Regions of Different Magnetic Morphology in the 23rd and 24th Cycles","authors":"A. V. Zhukova, V. I. Abramenko, R. A. Suleymanova","doi":"10.1134/S0016793224700026","DOIUrl":null,"url":null,"abstract":"<p>The characteristics of solar cycles important for the development of dynamo theory can manifest themselves differently when different activity indices are used. To study the features of the north–south (N–S) asymmetry of solar activity, a comparison was made of the time profiles of active regions (ARs) of the 23rd and 24th cycles based on data on their number (the most accessible and frequently used) and magnetic flux (allowing a more complete assessment about the generative function of the dynamo process). We used data on 3047 ARs that appeared on the disk from June 1996 to December 2020 according to the MMC ARs CrAO (magneto-morphological classification of ARs of the Crimean Astrophysical Observatory) catalog (http://sun.crao.ru/databases/catalog-mmc-ars). The attribution of AR to the classes of the regular and irregular sunspot groups was taken into account in accordance with the MMC ARs CrAO. Analysis of the results showed the following. Variations of ARs of both MMC classes are associated with a cycle, which confirms their relationship with the action of the global dynamo. Due to the overlap of multipeak ARs profiles of different classes, a classic double-peak cycle structure is formed in the two hemispheres. Variations in the relative position of profiles for the number and magnetic flux of ARs (for groups of each class in each hemisphere) during the cycle can be associated with changes in the sizes of ARs. This makes it possible to suggest the multicomponent nature of the dynamo process, which consists in joint manifestation of global (responsible for the production of ARs) and turbulent (associated with the fragmentation of magnetic structures due to turbulence in the convection zone) components of the dynamo. The strongest magnetic fluxes observed for the irregular groups in the maximum of the cycle may also indicate action of the turbulent component of the dynamo distorting the regular flux tube. The pronounced N–S asymmetry of these fluxes agrees with the hypothesis on the possibility of weakening of the toroidal field in one of the hemispheres due to the interaction of the dipole and quadrupole components.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 7","pages":"1004 - 1013"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224700026","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The characteristics of solar cycles important for the development of dynamo theory can manifest themselves differently when different activity indices are used. To study the features of the north–south (N–S) asymmetry of solar activity, a comparison was made of the time profiles of active regions (ARs) of the 23rd and 24th cycles based on data on their number (the most accessible and frequently used) and magnetic flux (allowing a more complete assessment about the generative function of the dynamo process). We used data on 3047 ARs that appeared on the disk from June 1996 to December 2020 according to the MMC ARs CrAO (magneto-morphological classification of ARs of the Crimean Astrophysical Observatory) catalog (http://sun.crao.ru/databases/catalog-mmc-ars). The attribution of AR to the classes of the regular and irregular sunspot groups was taken into account in accordance with the MMC ARs CrAO. Analysis of the results showed the following. Variations of ARs of both MMC classes are associated with a cycle, which confirms their relationship with the action of the global dynamo. Due to the overlap of multipeak ARs profiles of different classes, a classic double-peak cycle structure is formed in the two hemispheres. Variations in the relative position of profiles for the number and magnetic flux of ARs (for groups of each class in each hemisphere) during the cycle can be associated with changes in the sizes of ARs. This makes it possible to suggest the multicomponent nature of the dynamo process, which consists in joint manifestation of global (responsible for the production of ARs) and turbulent (associated with the fragmentation of magnetic structures due to turbulence in the convection zone) components of the dynamo. The strongest magnetic fluxes observed for the irregular groups in the maximum of the cycle may also indicate action of the turbulent component of the dynamo distorting the regular flux tube. The pronounced N–S asymmetry of these fluxes agrees with the hypothesis on the possibility of weakening of the toroidal field in one of the hemispheres due to the interaction of the dipole and quadrupole components.
使用不同的活动指数时,对发电机理论发展具有重要意义的太阳活动周期的特征表现不同。为了研究太阳活动的南北不对称特征,基于活动区数量(最容易获得和最常用)和磁通量(可以更完整地评估发电机过程的生成函数)的数据,对第23和第24周期的活动区(ARs)时间分布进行了比较。根据MMC ARs CrAO(克里米亚天体物理天文台的ARs磁形态分类)目录(http://sun.crao.ru/databases/catalog-mmc-ars),我们使用了1996年6月至2020年12月出现在磁盘上的3047个ARs的数据。根据MMC ARs CrAO,将AR归类为规则和不规则太阳黑子群。分析结果显示如下。这两类MMC的ar变化都与一个周期有关,这证实了它们与全球发电机作用的关系。由于不同种类的多峰氩谱的重叠,在两个半球形成了典型的双峰周期结构。在周期内ARs的数目和磁通量剖面的相对位置的变化(对于每个半球的每一类群体)可以与ARs大小的变化相关联。这使得我们有可能提出发电机过程的多组分性质,它包括发电机的全局(负责ARs的产生)和湍流(与对流区湍流导致的磁性结构破碎有关)组分的联合表现。在循环最大值处观察到的不规则群的最强磁通量也可能表明发电机的湍流成分扭曲了规则磁通管的作用。这些通量的明显的N-S不对称与关于由于偶极子和四极子分量的相互作用而使其中一个半球的环面场减弱的可能性的假设一致。
期刊介绍:
Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.