Synthesis of Complex Aluminum–Cobalt Systems Using a Thermoactivated Gibbsite Product

IF 0.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Russian Journal of Physical Chemistry A Pub Date : 2025-01-17 DOI:10.1134/S0036024424702303
A. V. Zhuzhgov, A. S. Gorkusha, E. A. Suprun, A. I. Lysikov, L. A. Isupova
{"title":"Synthesis of Complex Aluminum–Cobalt Systems Using a Thermoactivated Gibbsite Product","authors":"A. V. Zhuzhgov,&nbsp;A. S. Gorkusha,&nbsp;E. A. Suprun,&nbsp;A. I. Lysikov,&nbsp;L. A. Isupova","doi":"10.1134/S0036024424702303","DOIUrl":null,"url":null,"abstract":"<p>The authors explore the possibility of synthesizing highly loaded mixed aluminum–cobalt spinels via the hydrochemical treatment of suspensions of a powder of the product of the centrifugal thermal activation of gibbsite in aqueous solutions of cobalt nitrate under room-temperature or hydrothermal conditions via X-ray diffraction, thermal, microscopic, adsorption, and chemical analysis. It is found that the heat treatment of products of hydrochemical interaction (xerogels) in the range of 350–850°C produces Co<sub>3</sub>O<sub>4</sub> and CoAl<sub>2</sub>O<sub>4</sub> spinel phases with different phase ratios, depending on the conditions of synthesis. The hydrochemical treatment of suspensions at room temperature ensures the dominant formation of a Co<sub>3</sub>O<sub>4</sub> phase after calcination, while hydrothermal treatment at 150°C results in deeper interaction between the suspension components during treatment, ensuring the formation of CoAl<sub>2</sub>O<sub>4</sub> after heat treatment. It is shown that the maximum content of CoAl<sub>2</sub>O<sub>4</sub> spinel (90%, according to H<sub>2</sub>-TPR) is observed for the hydrothermal product calcined at a temperature 850°C. The considered technique yields complex aluminum–cobalt compounds with different phase ratios, allowing the complete elimination of effluents. It also reduces the number of stages of synthesis, the amount of initial reagents, and 75 wt % of the total amount of nitrates, relative to using classical nitrate coprecipitation.</p>","PeriodicalId":767,"journal":{"name":"Russian Journal of Physical Chemistry A","volume":"98 13","pages":"3046 - 3060"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry A","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0036024424702303","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The authors explore the possibility of synthesizing highly loaded mixed aluminum–cobalt spinels via the hydrochemical treatment of suspensions of a powder of the product of the centrifugal thermal activation of gibbsite in aqueous solutions of cobalt nitrate under room-temperature or hydrothermal conditions via X-ray diffraction, thermal, microscopic, adsorption, and chemical analysis. It is found that the heat treatment of products of hydrochemical interaction (xerogels) in the range of 350–850°C produces Co3O4 and CoAl2O4 spinel phases with different phase ratios, depending on the conditions of synthesis. The hydrochemical treatment of suspensions at room temperature ensures the dominant formation of a Co3O4 phase after calcination, while hydrothermal treatment at 150°C results in deeper interaction between the suspension components during treatment, ensuring the formation of CoAl2O4 after heat treatment. It is shown that the maximum content of CoAl2O4 spinel (90%, according to H2-TPR) is observed for the hydrothermal product calcined at a temperature 850°C. The considered technique yields complex aluminum–cobalt compounds with different phase ratios, allowing the complete elimination of effluents. It also reduces the number of stages of synthesis, the amount of initial reagents, and 75 wt % of the total amount of nitrates, relative to using classical nitrate coprecipitation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用热活化三水铝石合成复合铝钴体系
作者通过x射线衍射、热、显微、吸附和化学分析,探索了在室温或水热条件下对硝酸钴水溶液中三水铝石离心热活化产物的粉末悬浮液进行水化学处理,合成高负载混合铝钴尖晶石的可能性。研究发现,在350 ~ 850℃范围内对水化学反应产物(干凝胶)进行热处理,根据合成条件的不同,可生成不同相比的Co3O4和CoAl2O4尖晶石相。悬浮液在室温下的水化学处理保证了煅烧后主要形成Co3O4相,而在150℃下的水热处理使悬浮液组分在处理过程中相互作用更深,保证了热处理后形成CoAl2O4。结果表明,在850℃下煅烧的热液产物中,CoAl2O4尖晶石的含量最高(H2-TPR值为90%)。所考虑的技术产生具有不同相比的复杂铝钴化合物,允许完全消除废水。它还减少了合成阶段的数量,初始试剂的数量,以及75%的硝酸盐总量,相对于使用经典的硝酸盐共沉淀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
376
审稿时长
5.1 months
期刊介绍: Russian Journal of Physical Chemistry A. Focus on Chemistry (Zhurnal Fizicheskoi Khimii), founded in 1930, offers a comprehensive review of theoretical and experimental research from the Russian Academy of Sciences, leading research and academic centers from Russia and from all over the world. Articles are devoted to chemical thermodynamics and thermochemistry, biophysical chemistry, photochemistry and magnetochemistry, materials structure, quantum chemistry, physical chemistry of nanomaterials and solutions, surface phenomena and adsorption, and methods and techniques of physicochemical studies.
期刊最新文献
Molecular Similarity Used for Evaluating the Accuracy of Retention Index Predictions in Gas Chromatography Using Deep Learning Optimization of β-Ga2O3 Device Performance through Rare Earth Doping: Analysis of Stability, Electronic Structure, and Optical Properties Inhibitory Protection of Low-Carbon Steel in a Flow of Sulfuric Acid Solution Containing Iron(III) Sulfate Thermochemistry of Dissolution of Cobalt Tetra-4-carboxymetallophthalocyanine in Aqueous Solutions of Potassium Hydroxide at 298.15 K Applicability of Embedded Atom Model (EAM) Potentials to Liquid Silicon and Germanium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1