Preparation and characterization of chitosan/LDPE polymeric blends compatibilized with LDPE-g-MA

IF 2.6 4区 化学 Q3 POLYMER SCIENCE Journal of Polymer Research Pub Date : 2025-01-20 DOI:10.1007/s10965-025-04263-w
Rushik Patel, Rudresh Trivedi, Mahendrasinh Raj, Lata Raj
{"title":"Preparation and characterization of chitosan/LDPE polymeric blends compatibilized with LDPE-g-MA","authors":"Rushik Patel,&nbsp;Rudresh Trivedi,&nbsp;Mahendrasinh Raj,&nbsp;Lata Raj","doi":"10.1007/s10965-025-04263-w","DOIUrl":null,"url":null,"abstract":"<div><p>Chitosan, a polysaccharide, has garnered significant attention due to its eco-friendly, cost-effective, and biodegradable properties. This study explores the chemical modification of chitosan via graft copolymerization with vinyl monomers (methacrylamide and tert-butyl acrylate) in an aqueous medium using ceric ammonium nitrate as an initiator. Three varieties of chitosan and grafted chitosan (10–30%) were combined with low-density polyethylene at various ratios via a twin-screw extruder. To enhance the interfacial interaction between the two materials, maleic anhydride was grafted onto low-density polyethylene and employed as a compatibilizer (5 and 10%). The grafted chitosan was analyzed via fourier transform infrared spectroscopy, gel permeation chromatography, and grafting parameters, such as the percentage of grafting G (%), efficiency E (%), and yield of grafted copolymerization Y (%), were determined. The polymeric blends were produced by twin screw extruder and automatic injection molding machine and subsequently evaluated for their mechanical properties, scanning electron microscopy, thermogravimetric analysis, chemical resistance, and biodegradation studies. Thermal stability analysis of LDPE, Chitosan/LDPE-g-MA/LDPE (RCL), Chitosan-g-methacrylamide/LDPE-g-MA/LDPE (RNCGML), and Chitosan-g-tert-butyl acrylate/LDPE-g-MA/LDPE (RBCGTL) using TGA data shows LDPE retains 99.698% of its mass at 250 °C, compared to Chitosan/LDPE-g-MA/LDPE (RCL)(95.897%), Chitosan-g-methacrylamide/LDPE-g-MA/LDPE (RNCGML) (90.584%), and Chitosan-g-tert-butyl acrylate/LDPE-g-MA/LDPE (RBCGTL) (79.408%). At 400 °C, LDPE retains 97.273% of its mass, while Chitosan/LDPE-g-MA/LDPE (RCL), Chitosan-g-methacrylamide/LDPE-g-MA/LDPE (RNCGML) and Chitosan-g-tert-butyl acrylate/LDPE-g-MA/LDPE (RBCGTL) drop to 79.463%, 82.425%, and 67.815%, respectively. At 500 °C, LDPE degrades to 5.833%, whereas Chitosan/LDPE-g-MA/LDPE (RCL), Chitosan-g-methacrylamide/LDPE-g-MA/LDPE (RNCGML), and RBCGTL retain 8.811%, 10.310%, and 15.053%, respectively, indicating Chitosan-g-tert-butyl acrylate/LDPE-g-MA/LDPE (RBCGTL) superior thermal resistance. Chitosan-g-methacrylamide/LDPE-g-MA/LDPE (RNCGML) exhibits the highest biodegradability, with a 19% weight reduction after 15 days, increasing to 25% after 45 days. Chitosan/LDPE-g-MA/LDPE (RCL) shows a weight loss of 16% and 22%, while Chitosan-g-tert-butyl acrylate/LDPE-g-MA/LDPE (RBCGTL) has the lowest biodegradability at 13% and 19%, respectively, demonstrating superior biodegradability characteristics.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"32 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-025-04263-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Chitosan, a polysaccharide, has garnered significant attention due to its eco-friendly, cost-effective, and biodegradable properties. This study explores the chemical modification of chitosan via graft copolymerization with vinyl monomers (methacrylamide and tert-butyl acrylate) in an aqueous medium using ceric ammonium nitrate as an initiator. Three varieties of chitosan and grafted chitosan (10–30%) were combined with low-density polyethylene at various ratios via a twin-screw extruder. To enhance the interfacial interaction between the two materials, maleic anhydride was grafted onto low-density polyethylene and employed as a compatibilizer (5 and 10%). The grafted chitosan was analyzed via fourier transform infrared spectroscopy, gel permeation chromatography, and grafting parameters, such as the percentage of grafting G (%), efficiency E (%), and yield of grafted copolymerization Y (%), were determined. The polymeric blends were produced by twin screw extruder and automatic injection molding machine and subsequently evaluated for their mechanical properties, scanning electron microscopy, thermogravimetric analysis, chemical resistance, and biodegradation studies. Thermal stability analysis of LDPE, Chitosan/LDPE-g-MA/LDPE (RCL), Chitosan-g-methacrylamide/LDPE-g-MA/LDPE (RNCGML), and Chitosan-g-tert-butyl acrylate/LDPE-g-MA/LDPE (RBCGTL) using TGA data shows LDPE retains 99.698% of its mass at 250 °C, compared to Chitosan/LDPE-g-MA/LDPE (RCL)(95.897%), Chitosan-g-methacrylamide/LDPE-g-MA/LDPE (RNCGML) (90.584%), and Chitosan-g-tert-butyl acrylate/LDPE-g-MA/LDPE (RBCGTL) (79.408%). At 400 °C, LDPE retains 97.273% of its mass, while Chitosan/LDPE-g-MA/LDPE (RCL), Chitosan-g-methacrylamide/LDPE-g-MA/LDPE (RNCGML) and Chitosan-g-tert-butyl acrylate/LDPE-g-MA/LDPE (RBCGTL) drop to 79.463%, 82.425%, and 67.815%, respectively. At 500 °C, LDPE degrades to 5.833%, whereas Chitosan/LDPE-g-MA/LDPE (RCL), Chitosan-g-methacrylamide/LDPE-g-MA/LDPE (RNCGML), and RBCGTL retain 8.811%, 10.310%, and 15.053%, respectively, indicating Chitosan-g-tert-butyl acrylate/LDPE-g-MA/LDPE (RBCGTL) superior thermal resistance. Chitosan-g-methacrylamide/LDPE-g-MA/LDPE (RNCGML) exhibits the highest biodegradability, with a 19% weight reduction after 15 days, increasing to 25% after 45 days. Chitosan/LDPE-g-MA/LDPE (RCL) shows a weight loss of 16% and 22%, while Chitosan-g-tert-butyl acrylate/LDPE-g-MA/LDPE (RBCGTL) has the lowest biodegradability at 13% and 19%, respectively, demonstrating superior biodegradability characteristics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖/LDPE共混物与LDPE-g- ma增容的制备及表征
壳聚糖是一种多糖,因其环保、经济、可生物降解的特性而备受关注。本研究以硝酸铈铵为引发剂,在水介质中与乙烯基单体(甲基丙烯酰胺和丙烯酸叔丁酯)接枝共聚,对壳聚糖进行了化学改性。采用双螺杆挤出机将3种壳聚糖和接枝壳聚糖(10-30%)按不同比例与低密度聚乙烯复合。为了增强两种材料之间的界面相互作用,将马来酸酐接枝到低密度聚乙烯上并作为相容剂(5%和10%)。通过傅里叶变换红外光谱、凝胶渗透色谱等方法对壳聚糖进行了分析,并测定了接枝率G(%)、效率E(%)、接枝共聚率Y(%)等接枝参数。聚合物共混物由双螺杆挤出机和自动注塑机生产,随后对其机械性能、扫描电子显微镜、热重分析、耐化学性和生物降解研究进行了评估。对LDPE、壳聚糖/LDPE-g- ma /LDPE (RCL)、壳聚糖-g-甲基丙烯酰胺/LDPE-g- ma /LDPE (RNCGML)、壳聚糖-g-丙烯酸叔丁酯/LDPE-g- ma /LDPE (RBCGTL)的热稳定性分析表明,在250℃时,LDPE的质量保持率为99.698%,壳聚糖/LDPE-g- ma /LDPE (RNCGML)的质量保持率为95.897%,壳聚糖-g-甲基丙烯酰胺/LDPE-g- ma /LDPE (RNCGML)的质量保持率为90.584%,壳聚糖-g-丙烯酸叔丁酯/LDPE-g- ma /LDPE (RBCGTL)的质量保持率为79.408%。400℃时,LDPE保持97.273%的质量,壳聚糖/LDPE-g- ma /LDPE (RCL)、壳聚糖-g-甲基丙烯酰胺/LDPE-g- ma /LDPE (RNCGML)和壳聚糖-g-丙烯酸叔丁酯/LDPE-g- ma /LDPE (RBCGTL)分别降至79.463%、82.425%和67.815%。500℃时,壳聚糖/LDPE-g- ma /LDPE (RCL)、壳聚糖-g-甲基丙烯酰胺/LDPE-g- ma /LDPE (RNCGML)和RBCGTL的耐热性分别为8.811%、10.310%和15.053%,表明壳聚糖-g-丙烯酸丁酯/LDPE-g- ma /LDPE (RBCGTL)具有较好的耐热性。壳聚糖-g-甲基丙烯酰胺/LDPE-g- ma /LDPE (RNCGML)表现出最高的生物降解性,15天后重量减轻19%,45天后增加到25%。壳聚糖/LDPE-g- ma /LDPE (RCL)的失重率分别为16%和22%,壳聚糖-g-丙烯酸叔丁酯/LDPE-g- ma /LDPE (RBCGTL)的生物降解率最低,分别为13%和19%,具有良好的生物降解特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Polymer Research
Journal of Polymer Research 化学-高分子科学
CiteScore
4.70
自引率
7.10%
发文量
472
审稿时长
3.6 months
期刊介绍: Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology. As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including: polymer synthesis; polymer reactions; polymerization kinetics; polymer physics; morphology; structure-property relationships; polymer analysis and characterization; physical and mechanical properties; electrical and optical properties; polymer processing and rheology; application of polymers; supramolecular science of polymers; polymer composites.
期刊最新文献
Optimization of the poloxamer 407-conjugated gelatin to synthesize pH-sensitive nanocarriers for controlled paclitaxel delivery Characterization and study of physicochemical of polyacrylate-cement-derived composite Chain transfer to monomer – the main chain-growth termination reaction in radical ring-opening polymerization of ketene acetals Preparation and characterization of chitosan/LDPE polymeric blends compatibilized with LDPE-g-MA Featuring of alumina nanoparticle and NaOH treated flax fiber on function properties of polypropylene composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1