A. G. Shmelev, A. V. Leontyev, D. N. Petrov, L. A. Nutrdinova, E. O. Mityushkin, D. K. Zharkov, R. R. Zairov, A. R. Mustafina, O. Kh. Khasanov, V. G. Nikiforov
{"title":"[Ru(dipy)3]2+@SiO2 Nanophosphor as Temperature Sensor: Photobleaching Cheating","authors":"A. G. Shmelev, A. V. Leontyev, D. N. Petrov, L. A. Nutrdinova, E. O. Mityushkin, D. K. Zharkov, R. R. Zairov, A. R. Mustafina, O. Kh. Khasanov, V. G. Nikiforov","doi":"10.1134/S1062873824708894","DOIUrl":null,"url":null,"abstract":"<p>We used a 55 nm [Ru(dipy)<sub>3</sub>]<sup>2+</sup>@SiO<sub>2</sub> nanophosphore as a temperature sensor under photobleaching conditions. We have calibrated these nanoparticles for temperature measurements using/analyzing both luminescence intensity and decay time change. We show that an exposure to a 405 nm semiconductor laser with a power flux density of 2 kW/cm<sup>2</sup> leads to a two-fold decrease in luminescence intensity over time. At the same time (4 h), the characteristic decay time of the luminescence decreases by approximately half. We demonstrate that a ratiometric method is more reliable for temperature measurements in the range from 300 to 350 K. This method takes approximately half the time required to measure the kinetics of luminescence decay.</p>","PeriodicalId":504,"journal":{"name":"Bulletin of the Russian Academy of Sciences: Physics","volume":"88 1 supplement","pages":"S122 - S126"},"PeriodicalIF":0.4800,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Russian Academy of Sciences: Physics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1062873824708894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We used a 55 nm [Ru(dipy)3]2+@SiO2 nanophosphore as a temperature sensor under photobleaching conditions. We have calibrated these nanoparticles for temperature measurements using/analyzing both luminescence intensity and decay time change. We show that an exposure to a 405 nm semiconductor laser with a power flux density of 2 kW/cm2 leads to a two-fold decrease in luminescence intensity over time. At the same time (4 h), the characteristic decay time of the luminescence decreases by approximately half. We demonstrate that a ratiometric method is more reliable for temperature measurements in the range from 300 to 350 K. This method takes approximately half the time required to measure the kinetics of luminescence decay.
期刊介绍:
Bulletin of the Russian Academy of Sciences: Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It presents full-text articles (regular, letters to the editor, reviews) with the most recent results in miscellaneous fields of physics and astronomy: nuclear physics, cosmic rays, condensed matter physics, plasma physics, optics and photonics, nanotechnologies, solar and astrophysics, physical applications in material sciences, life sciences, etc. Bulletin of the Russian Academy of Sciences: Physics focuses on the most relevant multidisciplinary topics in natural sciences, both fundamental and applied. Manuscripts can be submitted in Russian and English languages and are subject to peer review. Accepted articles are usually combined in thematic issues on certain topics according to the journal editorial policy. Authors featured in the journal represent renowned scientific laboratories and institutes from different countries, including large international collaborations. There are globally recognized researchers among the authors: Nobel laureates and recipients of other awards, and members of national academies of sciences and international scientific societies.