V. G. Meledin, I. K. Kabardin, S. V. Dvoynishnikov, V. O. Zuev, O. G. Mukhin, S. V. Kakaulin, M. R. Gordienko, K. S. Zubanov, K. I. Stepanov, N. S. Goltsev, E. M. Tolstopyatov, P. N. Grakovich, L. F. Ivanov, D. V. Brel, L. A. Kalinin
{"title":"Experimental Research on Combined Methods against Icing of Wind Turbine Blades","authors":"V. G. Meledin, I. K. Kabardin, S. V. Dvoynishnikov, V. O. Zuev, O. G. Mukhin, S. V. Kakaulin, M. R. Gordienko, K. S. Zubanov, K. I. Stepanov, N. S. Goltsev, E. M. Tolstopyatov, P. N. Grakovich, L. F. Ivanov, D. V. Brel, L. A. Kalinin","doi":"10.1134/S181023282404009X","DOIUrl":null,"url":null,"abstract":"<p>The dynamic development and enhancement of the efficiency and safety of power engineering in the Arctic and remote Siberian regions of Russia are promising and relevant. The aim of this work is search for scientifically based approaches and methods against icing, which is one of the main problems hindering efficient use of wind turbines for autonomous power supply to remote settlements in the Far North. The necessity in the research and its relevance are confirmed by the growing interest in the development of the Arctic region by the leading world countries. The presented research strives for an optimal strategy against icing of wind turbine blades in climatic conditions typical of the Arctic coast of Russia. The efficiency of combined anti-icing methods relying on the use of aerodynamically transparent substrates, hierarchical superhydrophobic (HSH) coatings, and materials based on polytetrafluoroethylene fiber for wind turbine blades in Arctic climatic conditions was experimentally studied. It is a fundamentally new approach, which has no world analogues. For verification of the efficiency of the de-icing systems and identification of the most efficient protection methods or combination of them, an experimental comparison was made for the efficiency of superhydrophobic coatings when used separately and together with various traditional de-icing methods based on heaters and ultrasonic and vibration devices. It has been shown that the integral use of the proposed methods and approaches successfully solves the problem of developing a general anti-icing strategy.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 4","pages":"779 - 791"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S181023282404009X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic development and enhancement of the efficiency and safety of power engineering in the Arctic and remote Siberian regions of Russia are promising and relevant. The aim of this work is search for scientifically based approaches and methods against icing, which is one of the main problems hindering efficient use of wind turbines for autonomous power supply to remote settlements in the Far North. The necessity in the research and its relevance are confirmed by the growing interest in the development of the Arctic region by the leading world countries. The presented research strives for an optimal strategy against icing of wind turbine blades in climatic conditions typical of the Arctic coast of Russia. The efficiency of combined anti-icing methods relying on the use of aerodynamically transparent substrates, hierarchical superhydrophobic (HSH) coatings, and materials based on polytetrafluoroethylene fiber for wind turbine blades in Arctic climatic conditions was experimentally studied. It is a fundamentally new approach, which has no world analogues. For verification of the efficiency of the de-icing systems and identification of the most efficient protection methods or combination of them, an experimental comparison was made for the efficiency of superhydrophobic coatings when used separately and together with various traditional de-icing methods based on heaters and ultrasonic and vibration devices. It has been shown that the integral use of the proposed methods and approaches successfully solves the problem of developing a general anti-icing strategy.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.