Heat Transfer and Pressure Drop during Circulation of Non-Azeotropic Mixture in Heated Channel with Spiral Intensifiers

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Engineering Thermophysics Pub Date : 2025-01-17 DOI:10.1134/S1810232824040064
V. E. Zhukov, N. N. Mezentseva
{"title":"Heat Transfer and Pressure Drop during Circulation of Non-Azeotropic Mixture in Heated Channel with Spiral Intensifiers","authors":"V. E. Zhukov,&nbsp;N. N. Mezentseva","doi":"10.1134/S1810232824040064","DOIUrl":null,"url":null,"abstract":"<p>Mixtures are widely used as refrigerants and coolants in various energy systems. The thermophysical properties of a mixture differ from the properties of its individual components. This paper presents the results of a study of the intensity of heat transfer to a non-azeotropic alcohol-water mixture with a highly volatile component with mass concentration of 30% during forced circulation in a circular channel with spiral intensifiers with a hydrophobic coating. The experiments were carried out in a closed circulation circuit at a pressure of 0.03–0.04 MPa in the storage vessel. The test section was a stainless steel tube 2 m long with internal diameter of 7.6 mm and wall thickness of 0.2 mm. The heating was result of electric current flow in the tube wall. The spiral intensifiers had a winding pitch of 4 mm, and the thickness of the fluoroplastic coating was 0.9 mm. The experiments were carried out at mass flow rates of 36–450 kg/m<sup>2</sup>. The heat flux density range was <span>\\(8000 &lt; q &lt; 32000\\)</span> W/m<sup>2</sup>. The pressure drop in this test section was measured in single-phase and two-phase flow regimes, and the dynamics of the pressure drop during the formation of a two-phase flow under various operating parameters was shown. The use of the spiral intensifiers with a hydrophobic coating during circulation of the non-azeotropic alcohol-water mixture (30%) in the circular channel at channel wall temperatures below the saturation temperature of this mixture has led to the formation of a significant amount of the vapor-gas phase in the flow. The appearance of the vapor phase in the flow reduced the pressure drop in the heat-release section with the spiral intensifiers. At almost complete transition of the flow into the vapor phase at the outlet from the section, the pressure drop increased tenfold compared to the pressure drop in the liquid phase flow at the same mass velocity of the flow.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 4","pages":"734 - 749"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824040064","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mixtures are widely used as refrigerants and coolants in various energy systems. The thermophysical properties of a mixture differ from the properties of its individual components. This paper presents the results of a study of the intensity of heat transfer to a non-azeotropic alcohol-water mixture with a highly volatile component with mass concentration of 30% during forced circulation in a circular channel with spiral intensifiers with a hydrophobic coating. The experiments were carried out in a closed circulation circuit at a pressure of 0.03–0.04 MPa in the storage vessel. The test section was a stainless steel tube 2 m long with internal diameter of 7.6 mm and wall thickness of 0.2 mm. The heating was result of electric current flow in the tube wall. The spiral intensifiers had a winding pitch of 4 mm, and the thickness of the fluoroplastic coating was 0.9 mm. The experiments were carried out at mass flow rates of 36–450 kg/m2. The heat flux density range was \(8000 < q < 32000\) W/m2. The pressure drop in this test section was measured in single-phase and two-phase flow regimes, and the dynamics of the pressure drop during the formation of a two-phase flow under various operating parameters was shown. The use of the spiral intensifiers with a hydrophobic coating during circulation of the non-azeotropic alcohol-water mixture (30%) in the circular channel at channel wall temperatures below the saturation temperature of this mixture has led to the formation of a significant amount of the vapor-gas phase in the flow. The appearance of the vapor phase in the flow reduced the pressure drop in the heat-release section with the spiral intensifiers. At almost complete transition of the flow into the vapor phase at the outlet from the section, the pressure drop increased tenfold compared to the pressure drop in the liquid phase flow at the same mass velocity of the flow.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
螺旋增强剂加热通道中非共沸混合物循环过程中的传热与压降
混合物在各种能源系统中广泛用作制冷剂和冷却剂。混合物的热物理性质不同于其各组分的性质。本文介绍了一种质量浓度为30的高挥发性组分的非共沸醇水混合物的传热强度的研究结果% during forced circulation in a circular channel with spiral intensifiers with a hydrophobic coating. The experiments were carried out in a closed circulation circuit at a pressure of 0.03–0.04 MPa in the storage vessel. The test section was a stainless steel tube 2 m long with internal diameter of 7.6 mm and wall thickness of 0.2 mm. The heating was result of electric current flow in the tube wall. The spiral intensifiers had a winding pitch of 4 mm, and the thickness of the fluoroplastic coating was 0.9 mm. The experiments were carried out at mass flow rates of 36–450 kg/m2. The heat flux density range was \(8000 < q < 32000\) W/m2. The pressure drop in this test section was measured in single-phase and two-phase flow regimes, and the dynamics of the pressure drop during the formation of a two-phase flow under various operating parameters was shown. The use of the spiral intensifiers with a hydrophobic coating during circulation of the non-azeotropic alcohol-water mixture (30%) in the circular channel at channel wall temperatures below the saturation temperature of this mixture has led to the formation of a significant amount of the vapor-gas phase in the flow. The appearance of the vapor phase in the flow reduced the pressure drop in the heat-release section with the spiral intensifiers. At almost complete transition of the flow into the vapor phase at the outlet from the section, the pressure drop increased tenfold compared to the pressure drop in the liquid phase flow at the same mass velocity of the flow.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Engineering Thermophysics
Journal of Engineering Thermophysics THERMODYNAMICS-ENGINEERING, MECHANICAL
CiteScore
2.30
自引率
12.50%
发文量
0
审稿时长
3 months
期刊介绍: Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.
期刊最新文献
Dynamics of a Momentumless Turbulent Wake Behind a Sphere in a Turbulized Stratified Medium Insights into Significance of Radiative Inclined MHD on Mixed Convective Viscoelastic Flow of Hybrid Nanofluid over a Permeable Surface with Mass Transpiration Innovative Stainless-Steel Porous Substrate for Metal-Supported Solid Oxide Fuel Cells Diagnostics of Boiling Crisis Experimental Research on Combined Methods against Icing of Wind Turbine Blades
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1