Heat Transfer at Evaporation and Boiling of Refrigerant Mixture Film Falling Down a Vertical Heater with a 3D-Printed Dual-Scale Coating

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Engineering Thermophysics Pub Date : 2025-01-17 DOI:10.1134/S1810232824040076
O. A. Volodin, N. I. Pecherkin, D. A. Shvetsov, V. S. Serdyukov, V. P. Bessmeltsev, S. G. Baev, A. N. Pavlenko
{"title":"Heat Transfer at Evaporation and Boiling of Refrigerant Mixture Film Falling Down a Vertical Heater with a 3D-Printed Dual-Scale Coating","authors":"O. A. Volodin,&nbsp;N. I. Pecherkin,&nbsp;D. A. Shvetsov,&nbsp;V. S. Serdyukov,&nbsp;V. P. Bessmeltsev,&nbsp;S. G. Baev,&nbsp;A. N. Pavlenko","doi":"10.1134/S1810232824040076","DOIUrl":null,"url":null,"abstract":"<p>In the proposed study, experiments were conducted to investigate heat transfer enhancement during evaporation and boiling of R114-R21 refrigerant mixture film flowing down a vertical surface. To improve heat transfer, a dual-scale coating with macroscale longitudinal ribbing and a microscale porous internal structure of sintered bronze particles was printed by combined SLS/SLM (Selective Laser Sintering/Selective Laser Melting) on a flat rectangular substrate (<span>\\(70\\times80\\)</span> mm). The film Reynolds number ranged from 400 to 1300, indicating a change in the film flow regime from the laminar wave to the undeveloped turbulent one. Heat flux density varied from zero to pre-crisis values. The results showed that the presence of the modulated capillary-porous coating can increase heat transfer at nucleate boiling of the falling film by up to four times as compared to a smooth surface. To evaluate the obtained results, the authors compared them with experimental data previously gathered for a flat 3D-printed capillary-porous coating and a microstructured surface created by deformational cutting. The microcharacteristics of the obtained coating were also compared with the active centre size ranges predicted by models of Hsu and Liu et al.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 4","pages":"750 - 766"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824040076","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the proposed study, experiments were conducted to investigate heat transfer enhancement during evaporation and boiling of R114-R21 refrigerant mixture film flowing down a vertical surface. To improve heat transfer, a dual-scale coating with macroscale longitudinal ribbing and a microscale porous internal structure of sintered bronze particles was printed by combined SLS/SLM (Selective Laser Sintering/Selective Laser Melting) on a flat rectangular substrate (\(70\times80\) mm). The film Reynolds number ranged from 400 to 1300, indicating a change in the film flow regime from the laminar wave to the undeveloped turbulent one. Heat flux density varied from zero to pre-crisis values. The results showed that the presence of the modulated capillary-porous coating can increase heat transfer at nucleate boiling of the falling film by up to four times as compared to a smooth surface. To evaluate the obtained results, the authors compared them with experimental data previously gathered for a flat 3D-printed capillary-porous coating and a microstructured surface created by deformational cutting. The microcharacteristics of the obtained coating were also compared with the active centre size ranges predicted by models of Hsu and Liu et al.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3d打印双刻度涂层垂直加热器下制冷剂混合膜蒸发和沸腾时的传热
在本研究中,对R114-R21制冷剂混合膜沿垂直表面流动的蒸发和沸腾过程中的传热强化进行了实验研究。为了提高传热性能,采用SLS/SLM(选择性激光烧结/选择性激光熔化)技术在平面矩形衬底(\(70\times80\) mm)上打印了具有宏观纵向棱纹和微观多孔内部结构的烧结青铜颗粒双尺度涂层。膜的雷诺数在400 ~ 1300之间,表明膜的流动形式由层流转变为不发达的湍流。热通量密度从零变化到危机前的值。结果表明,与光滑表面相比,调制毛细管多孔涂层的存在可使降膜在成核沸腾时的传热增加多达四倍。为了评估获得的结果,作者将它们与之前收集的3d打印平面毛细孔涂层和变形切割产生的微结构表面的实验数据进行了比较。所得涂层的微观特征也与Hsu和Liu等人的模型预测的活性中心尺寸范围进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Engineering Thermophysics
Journal of Engineering Thermophysics THERMODYNAMICS-ENGINEERING, MECHANICAL
CiteScore
2.30
自引率
12.50%
发文量
0
审稿时长
3 months
期刊介绍: Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.
期刊最新文献
Dynamics of a Momentumless Turbulent Wake Behind a Sphere in a Turbulized Stratified Medium Insights into Significance of Radiative Inclined MHD on Mixed Convective Viscoelastic Flow of Hybrid Nanofluid over a Permeable Surface with Mass Transpiration Innovative Stainless-Steel Porous Substrate for Metal-Supported Solid Oxide Fuel Cells Diagnostics of Boiling Crisis Experimental Research on Combined Methods against Icing of Wind Turbine Blades
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1