{"title":"Assessment of Thermal Boundary Models for Large Eddy Simulations of Natural Convection","authors":"Lise Ceresiat, Miltiadis V. Papalexandris","doi":"10.1007/s10494-024-00594-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we report on the efficacy of four different thermal boundary models for Wall-Modelled Large Eddy Simulations (WMLES) of turbulent natural convection. Our test cases consist of Rayleigh-Bénard convection of liquid water at two Rayleigh numbers, <span>\\(Ra =1.35{\\times }10^8\\)</span> and <span>\\(Ra =10^9\\)</span>, respectively. Two configurations are examined, namely, convection in a box and in a cavity; the latter one involving a free-slip top boundary. For these test cases, the numerical results obtained via WMLES with the thermal boundary models are compared with those of Wall-Resolved Large-Eddy Simulations. According to our comparative studies, a particular version of the so-called Kays & Crawford model provides the most accurate predictions, at least for the test cases considered herein. Additionally, in this paper, we report on WMLES of turbulent convection at a higher Rayleigh number, <span>\\(Ra =5{\\times }10^9\\)</span>, with the aforementioned model. For this case, we analyse herein the flow structure and present results for first and second-order statistics of the flow.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 1","pages":"117 - 144"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00594-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we report on the efficacy of four different thermal boundary models for Wall-Modelled Large Eddy Simulations (WMLES) of turbulent natural convection. Our test cases consist of Rayleigh-Bénard convection of liquid water at two Rayleigh numbers, \(Ra =1.35{\times }10^8\) and \(Ra =10^9\), respectively. Two configurations are examined, namely, convection in a box and in a cavity; the latter one involving a free-slip top boundary. For these test cases, the numerical results obtained via WMLES with the thermal boundary models are compared with those of Wall-Resolved Large-Eddy Simulations. According to our comparative studies, a particular version of the so-called Kays & Crawford model provides the most accurate predictions, at least for the test cases considered herein. Additionally, in this paper, we report on WMLES of turbulent convection at a higher Rayleigh number, \(Ra =5{\times }10^9\), with the aforementioned model. For this case, we analyse herein the flow structure and present results for first and second-order statistics of the flow.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.