Classical and Bayesian estimation of the reliability characteristics for logistic-exponential distribution

IF 0.9 Q2 MATHEMATICS Afrika Matematika Pub Date : 2025-01-22 DOI:10.1007/s13370-025-01250-8
Abhimanyu Singh Yadav, Mahendra Saha, Sanku Dey
{"title":"Classical and Bayesian estimation of the reliability characteristics for logistic-exponential distribution","authors":"Abhimanyu Singh Yadav,&nbsp;Mahendra Saha,&nbsp;Sanku Dey","doi":"10.1007/s13370-025-01250-8","DOIUrl":null,"url":null,"abstract":"<div><p>The basic tool for studying the ageing and associated characteristics of any lifetime equipments is the reliability/survival function. It is common practice that while estimating the parameters of a model, one usually adopt maximum likelihood estimation method as the starting point as a classical method of estimation. In this paper, we consider maximum product of spacing estimation, besides using maximum likelihood method for estimating the reliability characteristics, such as, mean time to system failure (MTSF), reliability function (RF) and hazard rate function (HF) at a specified time point <span>\\(t_0\\)</span> for logistic-exponential distribution. In addition, three bootstrap methods are considered for obtaining confidence intervals of MTSF, RT and HF. Besides, Bayesian estimation method is considered under symmetric as well as asymmetric loss functions using gamma priors for both shape and scale parameters for the considered model. Further, highest posterior density credible intervals are obtained by using a Markov chain Monte Carlo method with Gibbs sampler under Metropolis–Hastings sampling procedure. Average widths and coverage probabilities for each confidence intervals are computed. A Monte Carlo simulation study is carried out to compare the performance of the proposed estimates. Finally, two real data sets have been re-analyzed for illustrative purposes.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01250-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The basic tool for studying the ageing and associated characteristics of any lifetime equipments is the reliability/survival function. It is common practice that while estimating the parameters of a model, one usually adopt maximum likelihood estimation method as the starting point as a classical method of estimation. In this paper, we consider maximum product of spacing estimation, besides using maximum likelihood method for estimating the reliability characteristics, such as, mean time to system failure (MTSF), reliability function (RF) and hazard rate function (HF) at a specified time point \(t_0\) for logistic-exponential distribution. In addition, three bootstrap methods are considered for obtaining confidence intervals of MTSF, RT and HF. Besides, Bayesian estimation method is considered under symmetric as well as asymmetric loss functions using gamma priors for both shape and scale parameters for the considered model. Further, highest posterior density credible intervals are obtained by using a Markov chain Monte Carlo method with Gibbs sampler under Metropolis–Hastings sampling procedure. Average widths and coverage probabilities for each confidence intervals are computed. A Monte Carlo simulation study is carried out to compare the performance of the proposed estimates. Finally, two real data sets have been re-analyzed for illustrative purposes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
logistic-指数分布可靠性特征的经典估计和贝叶斯估计
研究任何寿命设备的老化及其相关特性的基本工具是可靠性/生存函数。在对模型参数进行估计时,通常采用极大似然估计法作为起点,这是一种经典的估计方法。本文在logistic指数分布的情况下,除了使用极大似然法来估计系统在特定时间点\(t_0\)的平均失效时间(MTSF)、可靠性函数(RF)和危险率函数(HF)等可靠性特性外,还考虑了间隔估计的极大积。此外,考虑了三种bootstrap方法来获得MTSF、RT和HF的置信区间。此外,考虑了对称和非对称损失函数下的贝叶斯估计方法,对所考虑的模型的形状和尺度参数都使用gamma先验。在Metropolis-Hastings抽样程序下,利用Gibbs采样器的马尔可夫链蒙特卡罗方法获得了最高后验密度可信区间。计算每个置信区间的平均宽度和覆盖概率。进行了蒙特卡罗模拟研究来比较所提出的估计的性能。最后,为了说明问题,对两个真实数据集进行了重新分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
期刊最新文献
On k-uniformly starlike convex functions associated with (j, m)-ply symmetric points Classical and Bayesian estimation of the reliability characteristics for logistic-exponential distribution Homomorphisms of OBCI-algebras A study of two new integral representations for Gauss’s hypergeometric function with applications Numerical method for solving large-scale differential differential T-Sylvester and nonsymmetric T-Riccati matrix equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1