Combinatorial Nanoparticle-Bound ssDNA Oligonucleotide Library Synthesized by Split-and-Pool Synthesis.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2025-01-20 Epub Date: 2024-12-30 DOI:10.1021/acsabm.4c01681
John V L Nguyen, Ahlem Meziadi, Christina Nassif, Dillon Da Fonte, Lidija Malic, Maryam Tabrizian
{"title":"Combinatorial Nanoparticle-Bound ssDNA Oligonucleotide Library Synthesized by Split-and-Pool Synthesis.","authors":"John V L Nguyen, Ahlem Meziadi, Christina Nassif, Dillon Da Fonte, Lidija Malic, Maryam Tabrizian","doi":"10.1021/acsabm.4c01681","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic ssDNA oligonucleotides hold great potential for various applications, including DNA aptamers, DNA digital data storage, DNA origami, and synthetic genomes. In these contexts, precise control over the synthesis of the ssDNA strands is essential for generating combinatorial sequences with user-defined parameters. Desired features for creating synthetic DNA oligonucleotides include easy manipulation of DNA strands, effective detection of unique DNA sequences, and a straightforward mechanism for strand elongation and termination. In this study, we present a split-and-pool method for generating synthetic DNA oligonucleotides on nanoparticles, enabling the creation of scalable combinatorial libraries. Our approach involves coupling DNA to nanoparticles, ligating double-digested fragments for orientation-specific synthesis, and attaching a final single-digested fragment to ensure strand termination. We assess the quality of our method by characterizing both the DNA and the nanoparticles used as solid supports, confirming that our method produces scalable, combinatorial nanoparticle-bound ssDNA libraries with controllable strand lengths.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 1","pages":"844-853"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic ssDNA oligonucleotides hold great potential for various applications, including DNA aptamers, DNA digital data storage, DNA origami, and synthetic genomes. In these contexts, precise control over the synthesis of the ssDNA strands is essential for generating combinatorial sequences with user-defined parameters. Desired features for creating synthetic DNA oligonucleotides include easy manipulation of DNA strands, effective detection of unique DNA sequences, and a straightforward mechanism for strand elongation and termination. In this study, we present a split-and-pool method for generating synthetic DNA oligonucleotides on nanoparticles, enabling the creation of scalable combinatorial libraries. Our approach involves coupling DNA to nanoparticles, ligating double-digested fragments for orientation-specific synthesis, and attaching a final single-digested fragment to ensure strand termination. We assess the quality of our method by characterizing both the DNA and the nanoparticles used as solid supports, confirming that our method produces scalable, combinatorial nanoparticle-bound ssDNA libraries with controllable strand lengths.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分裂池合成组合纳米颗粒结合的ssDNA寡核苷酸文库。
合成的ssDNA寡核苷酸在DNA适体、DNA数字数据存储、DNA折纸和合成基因组等方面具有巨大的应用潜力。在这些情况下,精确控制ssDNA链的合成对于生成具有用户定义参数的组合序列至关重要。创建合成DNA寡核苷酸所需的特征包括易于操纵DNA链,有效检测独特的DNA序列,以及链延伸和终止的直接机制。在这项研究中,我们提出了一种分裂池方法,用于在纳米颗粒上生成合成DNA寡核苷酸,从而创建可扩展的组合文库。我们的方法包括将DNA偶联到纳米颗粒上,连接双酶切片段进行定向合成,并连接最终的单酶切片段以确保链终止。我们通过描述作为固体支撑的DNA和纳米颗粒来评估我们方法的质量,确认我们的方法产生了可扩展的、组合的纳米颗粒结合的ssDNA文库,具有可控的链长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Correction to "Effect of Chirality and Amphiphilicity on the Antimicrobial Activity of Tripodal Lysine-Based Peptides". Harnessing the Efficiency of Twin Boron Nitride and Graphene Monolayers for Anticancer Drug Delivery: Insights from DFT. Construction of Nonenzymatic Flexible Electrochemical Sensor for Glucose Using Bimetallic Copper Ferrite/Sulfur-Doped Graphene Oxide Water-Based Conductive Ink by Noninvasive Method. Nanoparticle-Reinforced Hydrogel with a Well-Defined Pore Structure for Sustainable Drug Release and Effective Wound Healing. A Rhodamine-Based Ratiometric Fluorescent Sensor for Dual-Channel Visible and Near-Infrared Emission Detection of NAD(P)H in Living Cells and Fruit Fly Larvae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1