{"title":"Serotonergic Mechanisms in Proteinoid-Based Protocells.","authors":"Panagiotis Mougkogiannis, Andrew Adamatzky","doi":"10.1021/acschemneuro.4c00801","DOIUrl":null,"url":null,"abstract":"<p><p>This study examines the effects of incorporating serotonin (5-HT) into proteinoid microspheres. It looks at the microspheres' structure and electrochemical properties. Proteinoid-serotonin assemblies have better symmetry and membrane organization than pristine proteinoids. Cyclic voltammetry shows a big boost in electron transfer. This is proven by a smaller peak separation and higher electrochemical efficiency. SEM imaging shows a distinct core-shell structure and uniform density. This suggests ordered molecular assembly. These findings show that serotonin changes proteinoid self-assembly. It creates structured systems with better electron transfer pathways. The serotonin-modified proto-neurons show new properties. They give insights into early cellular organization and signaling. This helps us understand prebiotic information processing systems.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00801","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the effects of incorporating serotonin (5-HT) into proteinoid microspheres. It looks at the microspheres' structure and electrochemical properties. Proteinoid-serotonin assemblies have better symmetry and membrane organization than pristine proteinoids. Cyclic voltammetry shows a big boost in electron transfer. This is proven by a smaller peak separation and higher electrochemical efficiency. SEM imaging shows a distinct core-shell structure and uniform density. This suggests ordered molecular assembly. These findings show that serotonin changes proteinoid self-assembly. It creates structured systems with better electron transfer pathways. The serotonin-modified proto-neurons show new properties. They give insights into early cellular organization and signaling. This helps us understand prebiotic information processing systems.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research