Directed Evolution of Silicatein Reveals Biomineralization Synergism between Protein Sequences.

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2025-01-06 eCollection Date: 2025-01-14 DOI:10.1021/acsomega.4c06359
Toriana N Vigil, Mary-Jean C Rowson, Abigail J Frost, Abigail R Janiga, Bryan W Berger
{"title":"Directed Evolution of Silicatein Reveals Biomineralization Synergism between Protein Sequences.","authors":"Toriana N Vigil, Mary-Jean C Rowson, Abigail J Frost, Abigail R Janiga, Bryan W Berger","doi":"10.1021/acsomega.4c06359","DOIUrl":null,"url":null,"abstract":"<p><p>Biomineralization is a green synthesis route for a variety of metal nanoparticles. Silicatein is a biomineralization protein originally found in marine sponge <i>Tethya aurantia</i> that converts inorganic precursors to metal oxide nanoparticles. In this work, we investigate the popular catalytic triad hypothesis and implement directed evolution with the aim to improve the solubility and kinetics of silicatein to enable increased nanoparticle synthesis. Site-directed mutagenesis with catalytic triad residues did not abolish biomineralization activity, aligning with the results seen in one previous study. Recombinant production of silicatein and mutants in <i>Escherichia coli</i> following library generation and a survival screen yielded several mutant proteins with augmented biomineralization activity. Sequence analysis of these mutant proteins reveals multiple sequences within a single cell that contribute to enhanced biomineralization. Combined with the sequence analysis of silicateins from different marine sponges, these results suggest the protein is permissive to wide sequence variations and that multiple protein sequences act synergistically for enhanced biomineralization.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 1","pages":"334-343"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740617/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c06359","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomineralization is a green synthesis route for a variety of metal nanoparticles. Silicatein is a biomineralization protein originally found in marine sponge Tethya aurantia that converts inorganic precursors to metal oxide nanoparticles. In this work, we investigate the popular catalytic triad hypothesis and implement directed evolution with the aim to improve the solubility and kinetics of silicatein to enable increased nanoparticle synthesis. Site-directed mutagenesis with catalytic triad residues did not abolish biomineralization activity, aligning with the results seen in one previous study. Recombinant production of silicatein and mutants in Escherichia coli following library generation and a survival screen yielded several mutant proteins with augmented biomineralization activity. Sequence analysis of these mutant proteins reveals multiple sequences within a single cell that contribute to enhanced biomineralization. Combined with the sequence analysis of silicateins from different marine sponges, these results suggest the protein is permissive to wide sequence variations and that multiple protein sequences act synergistically for enhanced biomineralization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅酸盐蛋白的定向进化揭示了蛋白序列之间的生物矿化协同作用。
生物矿化是多种金属纳米颗粒的绿色合成途径。硅酸盐蛋白是一种生物矿化蛋白,最初发现于海海绵Tethya aurantia,可将无机前体转化为金属氧化物纳米颗粒。在这项工作中,我们研究了流行的催化三元假说,并实施了定向进化,目的是提高硅酸盐的溶解度和动力学,以增加纳米颗粒的合成。位点定向诱变与催化三聚体残基并没有消除生物矿化活性,这与之前的一项研究结果一致。在文库生成和存活筛选后,在大肠杆菌中重组生产硅酸盐蛋白和突变体,产生了几种具有增强生物矿化活性的突变蛋白。这些突变蛋白的序列分析揭示了单个细胞内的多个序列有助于增强生物矿化。结合不同海绵体硅酸蛋白的序列分析,结果表明该蛋白允许广泛的序列变化,并且多个蛋白序列协同作用以增强生物矿化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
STEM in Bloom: Through the Garden of Inclusion. Characterizing Dynamic Contact Angle during Gas-Liquid Imbibition in Microchannels by Lattice Boltzmann Method Modeling. Energy-Efficient Insulating Geopolymer Foams with the Addition of Phase Change Materials. Obsidian: A Pioneering Natural Resource for Green, Fire-Resistant Composite Material Industries. Enhancing Aqueous Solubility and Anticancer Efficacy of Oligochitosan-Folate-Cisplatin Conjugates through Oleic Acid Grafting for Targeted Nanomedicine Development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1