Double-Dynamic-Bond Cross-Linked Hydrogel Adhesive with Cohesion-Adhesion Enhancement for Emergency Tissue Closure and Infected Wound Healing.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2025-01-22 DOI:10.1002/adhm.202404447
Ming Yan, Shi-Yu Hu, Hao-Jie Tan, Rui Dai, Haibo Wang, Xu Peng, Zhi-Guo Wang, Jia-Zhuang Xu, Zhong-Ming Li
{"title":"Double-Dynamic-Bond Cross-Linked Hydrogel Adhesive with Cohesion-Adhesion Enhancement for Emergency Tissue Closure and Infected Wound Healing.","authors":"Ming Yan, Shi-Yu Hu, Hao-Jie Tan, Rui Dai, Haibo Wang, Xu Peng, Zhi-Guo Wang, Jia-Zhuang Xu, Zhong-Ming Li","doi":"10.1002/adhm.202404447","DOIUrl":null,"url":null,"abstract":"<p><p>The hydrogel adhesives with strong tissue adhesion and biological characteristics adhm202404447are urgently needed for injury sealing and tissue repair. However, the negative correlation between tissue adhesion and the mechanical strength poses a challenge for their practical application. Herein, a bio-inspired cohesive enhancement strategy is developed to prepare the hydrogel adhesive with simultaneously enhanced mechanical strength and tissue adhesion. The double cross-linked network is achieved through the cooperation between polyacrylic acid grafted with N-hydroxy succinimide crosslinked by tannic acid and cohesion-enhanced ion crosslinking of sodium alginate and Ca<sup>2+</sup>. Such a unique structure endows the resultant hydrogel adhesive with excellent tissue adhesion strength and mechanical strength. The hydrogel adhesive is capable of sealing various organs in vitro, and exhibits satisfactory on-demand removability, antibacterial, and antioxidant properties. As a proof of concept, the hydrogel adhesive not only effectively halts non-compressible hemorrhages of beating heart and femoral artery injury models in rats, but also accelerates the healing of infected wound by inhibiting bacteria and reducing inflammation. Overall, this advanced hydrogel adhesive is promising as an emergency rescue adhesive that enables robust tissue closure, timely controlling bleeding, and promoting damaged tissue healing.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404447"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202404447","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The hydrogel adhesives with strong tissue adhesion and biological characteristics adhm202404447are urgently needed for injury sealing and tissue repair. However, the negative correlation between tissue adhesion and the mechanical strength poses a challenge for their practical application. Herein, a bio-inspired cohesive enhancement strategy is developed to prepare the hydrogel adhesive with simultaneously enhanced mechanical strength and tissue adhesion. The double cross-linked network is achieved through the cooperation between polyacrylic acid grafted with N-hydroxy succinimide crosslinked by tannic acid and cohesion-enhanced ion crosslinking of sodium alginate and Ca2+. Such a unique structure endows the resultant hydrogel adhesive with excellent tissue adhesion strength and mechanical strength. The hydrogel adhesive is capable of sealing various organs in vitro, and exhibits satisfactory on-demand removability, antibacterial, and antioxidant properties. As a proof of concept, the hydrogel adhesive not only effectively halts non-compressible hemorrhages of beating heart and femoral artery injury models in rats, but also accelerates the healing of infected wound by inhibiting bacteria and reducing inflammation. Overall, this advanced hydrogel adhesive is promising as an emergency rescue adhesive that enables robust tissue closure, timely controlling bleeding, and promoting damaged tissue healing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双动态键交联水凝胶黏合剂,增强内聚-黏附,用于紧急组织闭合和感染伤口愈合。
具有强组织粘附性和生物学特性的水凝胶胶粘剂adhm202404447是损伤密封和组织修复的迫切需要。然而,组织粘附性与机械强度之间的负相关关系给其实际应用带来了挑战。在此,开发了一种仿生内聚增强策略,以制备同时增强机械强度和组织粘附性的水凝胶粘合剂。通过单宁酸交联接枝n-羟基琥珀酰亚胺的聚丙烯酸和海藻酸钠与Ca2+的内聚增强离子交联,实现了双交联网络。这种独特的结构使所制得的水凝胶粘合剂具有优异的组织粘附强度和机械强度。该水凝胶粘合剂能够在体外密封各种器官,并表现出令人满意的按需去除性、抗菌性和抗氧化性。作为概念验证,水凝胶粘合剂不仅能有效阻止大鼠心脏和股动脉损伤模型的不可压缩性出血,还能通过抑制细菌和减少炎症来加速感染伤口的愈合。总的来说,这种先进的水凝胶粘合剂有望作为一种紧急救援粘合剂,能够实现坚固的组织闭合,及时控制出血,促进受损组织愈合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
Improved Black Phosphorus Nanocomposite Hydrogel for Bone Defect Repairing: Mechanisms for Advancing Osteogenesis. Adhesive and Conductive Fibrous Hydrogel Bandages for Effective Peripheral Nerve Regeneration. Endogenous Protein-Modified Gold Nanorods as Immune-Inert Biomodulators for Tumor-Specific Imaging and Therapy. Salt-Compact Albumin as a New Pure Protein-based Biomaterials: From Design to In Vivo Studies. Synthetic Bilirubin-Based Nanomedicine Protects Against Renal Ischemia/Reperfusion Injury Through Antioxidant and Immune-Modulating Activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1