Mi Jang, Sunhyun Hwang, Ji Su Chae, Gun Jang, Ho Seok Park, Yunki Lee, JungHyun Choi, Won-Sub Yoon, Kwang Chul Roh
{"title":"Two Steps Li Ion Storage Mechanism in Ruddlesden-Popper Li<sub>2</sub>La<sub>2</sub>Ti<sub>3</sub>O<sub>10</sub>.","authors":"Mi Jang, Sunhyun Hwang, Ji Su Chae, Gun Jang, Ho Seok Park, Yunki Lee, JungHyun Choi, Won-Sub Yoon, Kwang Chul Roh","doi":"10.1002/advs.202410543","DOIUrl":null,"url":null,"abstract":"<p><p>Innovative anode materials are essential for achieving high-energy-density lithium-ion batteries (LIBs) with longer lifetimes. Thus far, only a few studies have explored the use of layered perovskite structures as LIB anode materials. In this study, the study demonstrates the performance and charge/discharge mechanism of the previously undefined Ruddlesden-Popper Li₂La₂Ti₃O₁₀ (RPLLTO) as an anode material for LIBs. RPLLTO exhibits two unique voltage plateaus ≈0.6 and 0.4 V(vs Li/Li<sup>+</sup>), due to the insertion of lithium ions into different sites within its layered structure. The electrical state of Ti is analyzed using X-ray photoelectron spectroscopy and X-ray absorption near edge spectra, revealing a reduction from Ti⁴⁺ to Ti<sup>2</sup>⁺, corresponding to a capacity of 170 mAh·g⁻¹. In situ X-ray diffraction patterns and extended X-ray absorption fine structure spectra demonstrate the crystal structure changes during lithiation. Complementary expansion along the a/b axes and contraction along the c axis result in a volume change of only 4%. This structural stability is evidenced by an 88% capacity retention after 1000 cycles. This study successfully showcases the lithium-ion storage capability of RPLLTO and contributes to the development of perovskite anode materials with diverse compositions and structures.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2410543"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202410543","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Innovative anode materials are essential for achieving high-energy-density lithium-ion batteries (LIBs) with longer lifetimes. Thus far, only a few studies have explored the use of layered perovskite structures as LIB anode materials. In this study, the study demonstrates the performance and charge/discharge mechanism of the previously undefined Ruddlesden-Popper Li₂La₂Ti₃O₁₀ (RPLLTO) as an anode material for LIBs. RPLLTO exhibits two unique voltage plateaus ≈0.6 and 0.4 V(vs Li/Li+), due to the insertion of lithium ions into different sites within its layered structure. The electrical state of Ti is analyzed using X-ray photoelectron spectroscopy and X-ray absorption near edge spectra, revealing a reduction from Ti⁴⁺ to Ti2⁺, corresponding to a capacity of 170 mAh·g⁻¹. In situ X-ray diffraction patterns and extended X-ray absorption fine structure spectra demonstrate the crystal structure changes during lithiation. Complementary expansion along the a/b axes and contraction along the c axis result in a volume change of only 4%. This structural stability is evidenced by an 88% capacity retention after 1000 cycles. This study successfully showcases the lithium-ion storage capability of RPLLTO and contributes to the development of perovskite anode materials with diverse compositions and structures.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.