Two-dimensional ZIF-L derived dual Fe/FeNx sites for synergistic efficient oxygen reduction in alkaline and acid media

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-01-13 DOI:10.1016/j.jcis.2025.01.089
Jun-Fei Gu , Jichao Wang , Caixia Wang , Jin Li , Cheng Chen , Ni Zhang , Xiang-Ya Xu , Somboon Chaemchuen
{"title":"Two-dimensional ZIF-L derived dual Fe/FeNx sites for synergistic efficient oxygen reduction in alkaline and acid media","authors":"Jun-Fei Gu ,&nbsp;Jichao Wang ,&nbsp;Caixia Wang ,&nbsp;Jin Li ,&nbsp;Cheng Chen ,&nbsp;Ni Zhang ,&nbsp;Xiang-Ya Xu ,&nbsp;Somboon Chaemchuen","doi":"10.1016/j.jcis.2025.01.089","DOIUrl":null,"url":null,"abstract":"<div><div>Fe–N–C catalysts have emerged as the most promising alternatives to commercial Pt/C catalysts for oxygen reduction reaction (ORR) due to their cost-effectiveness and favorable activity. Herein, a dual-site Fe/FeN<sub>x</sub>-NC catalyst was synthesized via a green, in situ doping strategy using two-dimensional Fe-doped ZIF-L as a nitrogen-rich precursor. The catalyst integrated Fe nanoparticles (NPs) and FeN<sub>x</sub> sites anchored on carbon nanotubes, intertwined with nitrogen-doped porous carbon nanosheets, achieving a high active site density and graphitisation. Electrochemical tests revealed that the optimized Fe/FeN<sub>x</sub>-NC-1 exhibited significant ORR activity, with a half-wave potential of 0.92 V and 0.80 V for alkaline and acidic medium, respectively. Zn-air batteries employing Fe/FeN<sub>x</sub>-NC-1 delivered a peak power density of 168 mW·cm<sup>−2</sup> and a specific capacity of 790 mAh·g<sup>−1</sup>, outperforming those of Pt-based catalysts. Density functional theory calculations demonstrated a reduced free energy barrier for the rate-determining step (0.48 eV) compared to single-site Fe–N<sub>4</sub> models (0.79 eV). The synergy between Fe NPs and FeN<sub>x</sub> optimized ORR intermediate adsorption and facilitated charge/mass transfer. This study offers valuable insights for the development of advanced energy conversion systems.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"684 ","pages":"Pages 159-169"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725001031","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fe–N–C catalysts have emerged as the most promising alternatives to commercial Pt/C catalysts for oxygen reduction reaction (ORR) due to their cost-effectiveness and favorable activity. Herein, a dual-site Fe/FeNx-NC catalyst was synthesized via a green, in situ doping strategy using two-dimensional Fe-doped ZIF-L as a nitrogen-rich precursor. The catalyst integrated Fe nanoparticles (NPs) and FeNx sites anchored on carbon nanotubes, intertwined with nitrogen-doped porous carbon nanosheets, achieving a high active site density and graphitisation. Electrochemical tests revealed that the optimized Fe/FeNx-NC-1 exhibited significant ORR activity, with a half-wave potential of 0.92 V and 0.80 V for alkaline and acidic medium, respectively. Zn-air batteries employing Fe/FeNx-NC-1 delivered a peak power density of 168 mW·cm−2 and a specific capacity of 790 mAh·g−1, outperforming those of Pt-based catalysts. Density functional theory calculations demonstrated a reduced free energy barrier for the rate-determining step (0.48 eV) compared to single-site Fe–N4 models (0.79 eV). The synergy between Fe NPs and FeNx optimized ORR intermediate adsorption and facilitated charge/mass transfer. This study offers valuable insights for the development of advanced energy conversion systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维ZIF-L衍生的双Fe/FeNx位点在碱性和酸性介质中协同高效氧还原。
Fe-N-C催化剂由于具有成本效益和良好的活性,已成为氧还原反应(ORR)中最有前途的Pt/C催化剂替代品。本文以二维掺铁的ZIF-L为富氮前驱体,通过绿色原位掺杂策略合成了双位点Fe/FeNx-NC催化剂。催化剂将铁纳米粒子(NPs)和FeNx位点固定在碳纳米管上,与氮掺杂的多孔碳纳米片缠绕在一起,实现了高活性位点密度和石墨化。电化学测试表明,优化后的Fe/FeNx-NC-1在碱性和酸性介质中表现出显著的ORR活性,半波电位分别为0.92 V和0.80 V。采用Fe/FeNx-NC-1的锌空气电池的峰值功率密度为168 mW·cm-2,比容量为790 mAh·g-1,优于基于pt的催化剂。密度泛函理论计算表明,与单位点Fe-N4模型(0.79 eV)相比,速率决定步骤的自由能垒(0.48 eV)降低了。Fe NPs和FeNx的协同作用优化了ORR中间吸附,促进了电荷/质传递。该研究为开发先进的能量转换系统提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Potassium hydroxide
阿拉丁
2-methylimidazole
阿拉丁
Iron (II) sulfate heptahydrate
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
A double-confined strategy for enhancing the pseudocapacitance performance of nickel-based sulfides-unveiling aqueous pseudocapacitive energy storage mechanism. Enhanced photocatalytic H2O2 production via a facile atomic diffusion strategy near tammann temperature for single atom photocatalysts. Synergistic removal of chromium(VI) and tetracycline by porous carbon sponges embedded with MoS2: Performance and radical mechanism of piezoelectric catalysis. Molten salt synthesis of 1T phase dominated O-MoS2 for enhancing photocatalytic hydrogen production performance of CdS via Ohmic junction. Awakening n-π* electron transition in structurally distorted g-C3N4 nanosheets via hexamethylenetetramine-involved supercritical CO2 treatment towards efficient photocatalytic H2 production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1