Mariachiara Bianco, Ilario Losito, Giovanni Ventura, Beniamino Leoni, Onofrio Davide Palmitessa, Massimiliano Renna, Pietro Santamaria, Cosima Damiana Calvano, Tommaso R I Cataldi
{"title":"Gas-Phase Fragmentation of Coenzyme Q<sub>10</sub> Radical Anion Generated by APCI: A Study by High/Low-Resolution Tandem/Sequential Mass Spectrometry.","authors":"Mariachiara Bianco, Ilario Losito, Giovanni Ventura, Beniamino Leoni, Onofrio Davide Palmitessa, Massimiliano Renna, Pietro Santamaria, Cosima Damiana Calvano, Tommaso R I Cataldi","doi":"10.1021/jasms.4c00399","DOIUrl":null,"url":null,"abstract":"<p><p>Coenzyme Q<sub>10</sub> (CoQ<sub>10</sub>) and closely related compounds with varying isoprenoid tail lengths (CoQ<sub><i>n</i></sub>, <i>n</i> = 6-9) are biochemical cofactors involved in many physiological processes, playing important roles in cellular respiration and energy production. Liquid chromatography (LC) coupled with single or tandem mass spectrometry (MS) using electrospray (ESI) or atmospheric pressure chemical ionization (APCI) is considered the gold standard for the identification and quantification of CoQ<sub>10</sub> in food and biological samples. However, the characteristic fragmentation exhibited by the CoQ<sub>10</sub> radical anion ([M]<sup>•</sup><sup>-</sup>, <i>m</i>/<i>z</i> 862.684), the prevailing ion generated by APCI in negative polarity, has not been studied in detail. In this work, a systematic study was carried out to clarify this issue, using higher collisional energy dissociation (HCD) with high-resolution tandem FTMS and collision-induced dissociation-low-resolution sequential mass spectrometry (CID-MS<sup><i>n</i></sup>, <i>n</i> = 2-4). Various fragmentation pathways were successfully interpreted, with some structures proposed for product ions checked using density functional theory (DFT) calculations. Besides the already-known detachments of methyl radicals occurring directly from the CoQ<sub>10</sub> radical anion and leading to ions like [M - CH<sub>3</sub>]<b><sup>-</sup></b> and [M - 2CH<sub>3</sub>]<sup>•-</sup>, the homolytic cleavage of C-C bonds along the oligo-isoprenoid side chain was tentatively proposed to explain some of the observed fragmentations. As a result, the generation of uncommon yet potentially stable distonic biradical anions was hypothesized, with some of them likely undergoing intramolecular cyclization to generate ions without unpaired electrons. Diagnostic product ions emerged from the fragmentation processes of CoQ<sub>10</sub> and were found to be common also to the radical anions of other CoQ<sub><i>n</i></sub> derivatives (<i>n</i> = 7-9), facilitating their identification in extracts of edible <i>Brassicaceae</i> plant microgreens by reversed-phase liquid chromatography (RPLC)-APCI-FTMS.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00399","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Coenzyme Q10 (CoQ10) and closely related compounds with varying isoprenoid tail lengths (CoQn, n = 6-9) are biochemical cofactors involved in many physiological processes, playing important roles in cellular respiration and energy production. Liquid chromatography (LC) coupled with single or tandem mass spectrometry (MS) using electrospray (ESI) or atmospheric pressure chemical ionization (APCI) is considered the gold standard for the identification and quantification of CoQ10 in food and biological samples. However, the characteristic fragmentation exhibited by the CoQ10 radical anion ([M]•-, m/z 862.684), the prevailing ion generated by APCI in negative polarity, has not been studied in detail. In this work, a systematic study was carried out to clarify this issue, using higher collisional energy dissociation (HCD) with high-resolution tandem FTMS and collision-induced dissociation-low-resolution sequential mass spectrometry (CID-MSn, n = 2-4). Various fragmentation pathways were successfully interpreted, with some structures proposed for product ions checked using density functional theory (DFT) calculations. Besides the already-known detachments of methyl radicals occurring directly from the CoQ10 radical anion and leading to ions like [M - CH3]- and [M - 2CH3]•-, the homolytic cleavage of C-C bonds along the oligo-isoprenoid side chain was tentatively proposed to explain some of the observed fragmentations. As a result, the generation of uncommon yet potentially stable distonic biradical anions was hypothesized, with some of them likely undergoing intramolecular cyclization to generate ions without unpaired electrons. Diagnostic product ions emerged from the fragmentation processes of CoQ10 and were found to be common also to the radical anions of other CoQn derivatives (n = 7-9), facilitating their identification in extracts of edible Brassicaceae plant microgreens by reversed-phase liquid chromatography (RPLC)-APCI-FTMS.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives