Implementation of the Box-Behnken Design in the Development and Optimization of Methotrexate-Loaded Microsponges for Colon Cancer.

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Assay and drug development technologies Pub Date : 2025-01-23 DOI:10.1089/adt.2024.073
Mahendra Prajapati, Ranjit K Harwansh, Mohammad Akhlaquer Rahman, Rohitas Deshmukh
{"title":"Implementation of the Box-Behnken Design in the Development and Optimization of Methotrexate-Loaded Microsponges for Colon Cancer.","authors":"Mahendra Prajapati, Ranjit K Harwansh, Mohammad Akhlaquer Rahman, Rohitas Deshmukh","doi":"10.1089/adt.2024.073","DOIUrl":null,"url":null,"abstract":"<p><p>\n <i>Methotrexate (MTX) is an effective anticancer agent with limited water solubility, resulting in lower absorption in the gastrointestinal tract when administered orally. The present aim of the study is to construct sustained-release formulation of MTX-loaded microsponges with enhanced intestinal absorption and bioavailability using a quasi-emulsion solvent diffusion method. The Box-Behnken design (BBD) was adopted for this purpose. Particle size, encapsulation efficiency (EE), Q 2 h % (% drug release in 2 h), and Q 24 h % (% drug release in 24 h) were used as dependent factors, and polyvinyl alcohol, solvent, and stirring speed were used as independent factors. The prepared microsponges were characterized to assess their particle size and encapsulation efficacy (%). Attenuated total reflectance-Fourier transform infrared spectroscopy and differential scanning calorimetry were used to verify the compatibility study. Moreover, the cytotoxicity study was conducted on the HT-29 cell line. The optimized formulation exhibited a % encapsulation efficacy of 87.191% and a particle size of 2.176 µm. Furthermore, the optimized formulation demonstrated sustained drug release (85.71%) in Simulated Gastric Fluid (SGF) fluid at different pHs 1.2, 6.8, and 7.4. The stability study of the optimized formulation revealed good stability in terms of drug release, % encapsulation efficacy, and particle size. The results of the optimized formulation demonstrated that the viability of HT-29 colon cancer (CC) cells was dose-dependently decreased by MTX-loaded microsponges. BBD was successfully employed for the development and optimization of MTX microsponges filled in Eudragit S-100-coated hard gelatin capsule, depicting their potential release of MTX from microsponges capsule only at the colonic region and found to be potential carrier system for CC.</i>\n </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2024.073","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Methotrexate (MTX) is an effective anticancer agent with limited water solubility, resulting in lower absorption in the gastrointestinal tract when administered orally. The present aim of the study is to construct sustained-release formulation of MTX-loaded microsponges with enhanced intestinal absorption and bioavailability using a quasi-emulsion solvent diffusion method. The Box-Behnken design (BBD) was adopted for this purpose. Particle size, encapsulation efficiency (EE), Q 2 h % (% drug release in 2 h), and Q 24 h % (% drug release in 24 h) were used as dependent factors, and polyvinyl alcohol, solvent, and stirring speed were used as independent factors. The prepared microsponges were characterized to assess their particle size and encapsulation efficacy (%). Attenuated total reflectance-Fourier transform infrared spectroscopy and differential scanning calorimetry were used to verify the compatibility study. Moreover, the cytotoxicity study was conducted on the HT-29 cell line. The optimized formulation exhibited a % encapsulation efficacy of 87.191% and a particle size of 2.176 µm. Furthermore, the optimized formulation demonstrated sustained drug release (85.71%) in Simulated Gastric Fluid (SGF) fluid at different pHs 1.2, 6.8, and 7.4. The stability study of the optimized formulation revealed good stability in terms of drug release, % encapsulation efficacy, and particle size. The results of the optimized formulation demonstrated that the viability of HT-29 colon cancer (CC) cells was dose-dependently decreased by MTX-loaded microsponges. BBD was successfully employed for the development and optimization of MTX microsponges filled in Eudragit S-100-coated hard gelatin capsule, depicting their potential release of MTX from microsponges capsule only at the colonic region and found to be potential carrier system for CC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Box-Behnken设计在甲氨蝶呤结肠癌微海绵开发与优化中的应用。
甲氨蝶呤(MTX)是一种有效的抗癌剂,其水溶性有限,口服时胃肠道吸收较低。本研究的目的是采用准乳状溶剂扩散法构建具有增强肠道吸收和生物利用度的含mtx微海绵缓释制剂。为此采用Box-Behnken设计(BBD)。以粒径、包封率(EE)、Q 2h % (2 h内释药%)、Q 24h % (24 h内释药%)为依赖因素,以聚乙烯醇、溶剂、搅拌速度为独立因素。对制备的微海绵进行了表征,考察了其粒径大小和包封率(%)。采用衰减全反射-傅里叶变换红外光谱法和差示扫描量热法验证了相容性研究。并对HT-29细胞系进行了细胞毒性研究。优化后的配方包封率为87.191%,粒径为2.176µm。在ph值分别为1.2、6.8和7.4时,该制剂在模拟胃液(SGF)中的缓释率为85.71%。稳定性研究表明,优化后的制剂在释放度、包封率、粒径等方面具有良好的稳定性。结果表明,mtx负载微海绵对HT-29结肠癌(CC)细胞的活性呈剂量依赖性降低。利用BBD成功地开发和优化了Eudragit s -100包被硬明胶胶囊中填充的MTX微海绵,描述了它们仅在结肠区域释放MTX的潜力,并发现它们是CC的潜在载体系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Assay and drug development technologies
Assay and drug development technologies 医学-生化研究方法
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application. ASSAY and Drug Development Technologies coverage includes: -Assay design, target development, and high-throughput technologies- Hit to Lead optimization and medicinal chemistry through preclinical candidate selection- Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis- Approaches to assays configured for gene families, inherited, and infectious diseases- Assays and strategies for adapting model organisms to drug discovery- The use of stem cells as models of disease- Translation of phenotypic outputs to target identification- Exploration and mechanistic studies of the technical basis for assay and screening artifacts
期刊最新文献
Enhanced Anticancer Efficiency of Curcumin Co-Loaded Lawsone Solid Lipid Nanoparticles Against MCF-7 Breast Cancer Cell Lines: Optimization by Statistical JMP Software-Based Experimental Approach. Implementation of the Box-Behnken Design in the Development and Optimization of Methotrexate-Loaded Microsponges for Colon Cancer. Protective Effects of Schizochytrium Microalgal Fatty Acids on Alcoholic Liver Disease: A Network Pharmacology and In Vivo Study. In Vitro Antiviral Assays: A Review of Laboratory Methods. In Silico Screening of Phytochemicals as Potential Inhibitors of the JAK/STATs Pathway in Psoriasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1