{"title":"Intraocular lens calculation formula selection for short eyes: based on axial length and anterior chamber depth.","authors":"Ruoxi Gao, Jiaqing Zhang, Xiaotong Han, Yiguo Huang, Ruoxuan Huang, Jinfeng Ye, Ling Wen, Xiaozhang Qiu, Xiaoyun Chen, Xuhua Tan, Lixia Luo","doi":"10.1186/s12886-024-03793-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the predictive accuracy of 11 intraocular lens (IOL) calculation formulas in eyes with an axial length (AL) less than 22.00 mm.</p><p><strong>Methods: </strong>New-generation formulas (Barrett Universal II [BUII], Emmetropia Verifying Optical [EVO] 2.0, Hill-Radial Basis Function [Hill-RBF] 3.0, Hoffer QST, K6, Kane, Pearl-DGS) and traditional formulas (Haigis, Hoffer Q, Holladay 1 and SRK/T) were evaluated for predictive accuracy. Subgroup analyses were performed based on AL and anterior chamber depth (ACD).</p><p><strong>Results: </strong>The study enrolled a total of 184 eyes from 184 patients. The BUII, Hoffer QST, Hoffer Q, Holladay 1, and SRK/T showed myopic shifts (-0.49 to -0.18 diopters [D], P < 0.05), whereas K6 displayed a hyperopic shift (0.11 D, P = 0.03). The Kane exhibited no systematic bias (-0.07 D), and yielded lower mean absolute error (MAE) (0.48 D, P < 0.05) and root mean square absolute error (RMSAE) (0.65 D, P < 0.01). For eyes with an AL ≤ 21.5 mm and an ACD > 2.5 mm, the Pearl-DGS displayed the smallest MAE (0.43 D) and lowest RMSAE (0.57 D), while other new-generation formulas showed relatively worse performance (MAE: 0.46 to 0.67 D; RMSAE: 0.60 to 0.84 D).</p><p><strong>Conclusion: </strong>The Kane formula showed the highest accuracy in short eyes, whereas the Pearl-DGS had superior performance in eyes with a relatively shorter AL and deeper ACD.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9058,"journal":{"name":"BMC Ophthalmology","volume":"25 1","pages":"21"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737209/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12886-024-03793-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To evaluate the predictive accuracy of 11 intraocular lens (IOL) calculation formulas in eyes with an axial length (AL) less than 22.00 mm.
Methods: New-generation formulas (Barrett Universal II [BUII], Emmetropia Verifying Optical [EVO] 2.0, Hill-Radial Basis Function [Hill-RBF] 3.0, Hoffer QST, K6, Kane, Pearl-DGS) and traditional formulas (Haigis, Hoffer Q, Holladay 1 and SRK/T) were evaluated for predictive accuracy. Subgroup analyses were performed based on AL and anterior chamber depth (ACD).
Results: The study enrolled a total of 184 eyes from 184 patients. The BUII, Hoffer QST, Hoffer Q, Holladay 1, and SRK/T showed myopic shifts (-0.49 to -0.18 diopters [D], P < 0.05), whereas K6 displayed a hyperopic shift (0.11 D, P = 0.03). The Kane exhibited no systematic bias (-0.07 D), and yielded lower mean absolute error (MAE) (0.48 D, P < 0.05) and root mean square absolute error (RMSAE) (0.65 D, P < 0.01). For eyes with an AL ≤ 21.5 mm and an ACD > 2.5 mm, the Pearl-DGS displayed the smallest MAE (0.43 D) and lowest RMSAE (0.57 D), while other new-generation formulas showed relatively worse performance (MAE: 0.46 to 0.67 D; RMSAE: 0.60 to 0.84 D).
Conclusion: The Kane formula showed the highest accuracy in short eyes, whereas the Pearl-DGS had superior performance in eyes with a relatively shorter AL and deeper ACD.
期刊介绍:
BMC Ophthalmology is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of eye disorders, as well as related molecular genetics, pathophysiology, and epidemiology.