Na Xu , Zihuan Sun , Weikang Guan , Yiming Liu , Yun Gao , Chaoxian Yang
{"title":"PLGA scaffold combined with MSCs transplantation improved neural function and brain tissue structure in rats with traumatic brain injury","authors":"Na Xu , Zihuan Sun , Weikang Guan , Yiming Liu , Yun Gao , Chaoxian Yang","doi":"10.1016/j.brainresbull.2025.111216","DOIUrl":null,"url":null,"abstract":"<div><div>Poly (lactic-co-glycolic acid) (PLGA) is an important biomaterial for tissue defect repair, but its application in replacing missing brain tissue needs improvement. Mesenchymal stem cells (MSCs) have been used to treat various neurological diseases, but they face challenges when filling large tissue defects. The purpose of this study was to investigate the effects of PLGA combined with MSCs transplantation on brain structure and neural function in rats with traumatic brain injury (TBI), and explore its possible mechanism. The results showed that both PLGA transplantation and PLGA+MSCs transplantation could improve the brain structure and promote nerve function recovery in rats with TBI, with PLGA+MSCs transplantation being superior to PLGA transplantation. Furthermore, compared to PLGA transplantation alone, PLGA+MSCs transplantation further reduced brain injury and cell apoptosis, promoted neuron survival, and improved synaptic plasticity. Overall, the adhesion of MSCs to PLGA can enhance the therapeutic efficacy of PLGA in rats following TBI.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"221 ","pages":"Article 111216"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923025000280","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Poly (lactic-co-glycolic acid) (PLGA) is an important biomaterial for tissue defect repair, but its application in replacing missing brain tissue needs improvement. Mesenchymal stem cells (MSCs) have been used to treat various neurological diseases, but they face challenges when filling large tissue defects. The purpose of this study was to investigate the effects of PLGA combined with MSCs transplantation on brain structure and neural function in rats with traumatic brain injury (TBI), and explore its possible mechanism. The results showed that both PLGA transplantation and PLGA+MSCs transplantation could improve the brain structure and promote nerve function recovery in rats with TBI, with PLGA+MSCs transplantation being superior to PLGA transplantation. Furthermore, compared to PLGA transplantation alone, PLGA+MSCs transplantation further reduced brain injury and cell apoptosis, promoted neuron survival, and improved synaptic plasticity. Overall, the adhesion of MSCs to PLGA can enhance the therapeutic efficacy of PLGA in rats following TBI.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.