Hypoxia-triggered ERRα acetylation enhanced its oncogenic role and promoted progression of renal cell carcinoma by coordinating autophagosome-lysosome fusion.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY Cell Death & Disease Pub Date : 2025-01-16 DOI:10.1038/s41419-025-07345-1
Chun Feng, Demin Kong, Binghua Tong, Yonghui Liang, Fuyi Xu, Yangyang Yang, Yingying Wu, Xiaodong Chi, Pengfei Wei, Yang Yang, Guilong Zhang, Geng Tian, Zhaowei Xu
{"title":"Hypoxia-triggered ERRα acetylation enhanced its oncogenic role and promoted progression of renal cell carcinoma by coordinating autophagosome-lysosome fusion.","authors":"Chun Feng, Demin Kong, Binghua Tong, Yonghui Liang, Fuyi Xu, Yangyang Yang, Yingying Wu, Xiaodong Chi, Pengfei Wei, Yang Yang, Guilong Zhang, Geng Tian, Zhaowei Xu","doi":"10.1038/s41419-025-07345-1","DOIUrl":null,"url":null,"abstract":"<p><p>Estrogen-related receptor α (ERRα) is dysregulated in many types of cancer and exhibits oncogenic activity by promoting tumorigenesis and metastasis of cancer cells. However, its defined role in renal cell carcinoma (RCC) has not been fully elucidated. To reveal the biological function of ERRα and determine the underlying regulatory mechanism in RCC, the quantitative proteomics analysis and mechanism investigation were conducted. The results demonstrated that ERRα promoted the proliferation and tumorigenesis of RCC cells by maintaining lysosome-dependent autophagy flux. ERRα inhibition impaired the transcriptional expression of LAMP2 and VAMP8 and blocked the fusion of autophagosomes with lysosomes, causing the impairment of the autophagy-lysosome pathway and tumor repression in RCC. Moreover, VHL mutant-induced hyperactive hypoxia signaling in RCC triggered p300/CBP-mediated acetylation at the DNA-binding domain of ERRα, and this acetylation promoted its affinity toward targeting DNA and Parkin-mediated ubiquitination and proteasome-dependent degradation. This regulatory model enhanced ERRα transactivation on the expression of LAMP2 and VAMP8, which then maintained autophagy flux and RCC progression. Pharmaceutical inhibition on ERRα acetylation-mediated autophagy-lysosome pathway led to growth repression and sunitinib sensitivity of RCC cells. Taken together, this study uncovered a novel regulatory mechanism of acetylation contributing to the transcriptional performance and the oncogenic role of ERRα in RCC progression by modulating the autophagy-lysosome pathway. These findings might provide a novel approach for the clinical diagnosis and resolution of sunitinib resistance of RCC.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"23"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739407/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07345-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Estrogen-related receptor α (ERRα) is dysregulated in many types of cancer and exhibits oncogenic activity by promoting tumorigenesis and metastasis of cancer cells. However, its defined role in renal cell carcinoma (RCC) has not been fully elucidated. To reveal the biological function of ERRα and determine the underlying regulatory mechanism in RCC, the quantitative proteomics analysis and mechanism investigation were conducted. The results demonstrated that ERRα promoted the proliferation and tumorigenesis of RCC cells by maintaining lysosome-dependent autophagy flux. ERRα inhibition impaired the transcriptional expression of LAMP2 and VAMP8 and blocked the fusion of autophagosomes with lysosomes, causing the impairment of the autophagy-lysosome pathway and tumor repression in RCC. Moreover, VHL mutant-induced hyperactive hypoxia signaling in RCC triggered p300/CBP-mediated acetylation at the DNA-binding domain of ERRα, and this acetylation promoted its affinity toward targeting DNA and Parkin-mediated ubiquitination and proteasome-dependent degradation. This regulatory model enhanced ERRα transactivation on the expression of LAMP2 and VAMP8, which then maintained autophagy flux and RCC progression. Pharmaceutical inhibition on ERRα acetylation-mediated autophagy-lysosome pathway led to growth repression and sunitinib sensitivity of RCC cells. Taken together, this study uncovered a novel regulatory mechanism of acetylation contributing to the transcriptional performance and the oncogenic role of ERRα in RCC progression by modulating the autophagy-lysosome pathway. These findings might provide a novel approach for the clinical diagnosis and resolution of sunitinib resistance of RCC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺氧触发的ERRα乙酰化通过协调自噬体-溶酶体融合增强了其致癌作用,促进了肾癌的进展。
雌激素相关受体α (Estrogen-related receptor α, ERRα)在多种癌症中表达失调,并通过促进肿瘤发生和癌细胞转移表现出致癌活性。然而,其在肾细胞癌(RCC)中的明确作用尚未完全阐明。为了揭示ERRα在RCC中的生物学功能和潜在的调控机制,我们进行了定量蛋白质组学分析和机制研究。结果表明,ERRα通过维持溶酶体依赖的自噬通量来促进RCC细胞的增殖和肿瘤发生。ERRα抑制抑制了LAMP2和VAMP8的转录表达,阻断了自噬体与溶酶体的融合,导致RCC自噬-溶酶体途径受损,肿瘤抑制。此外,在RCC中,VHL突变诱导的高活性缺氧信号触发了p300/ cbp介导的erα DNA结合域的乙酰化,这种乙酰化促进了其靶向DNA和parkin介导的泛素化和蛋白酶体依赖性降解的亲和力。该调节模型增强了ERRα对LAMP2和VAMP8表达的反式激活,从而维持了自噬通量和RCC进展。药物抑制ERRα乙酰化介导的自噬-溶酶体途径导致RCC细胞生长抑制和舒尼替尼敏感性。综上所述,本研究揭示了一种新的乙酰化调节机制,通过调节自噬-溶酶体途径,促进ERRα在RCC进展中的转录表现和致癌作用。这些发现可能为临床诊断和解决RCC的舒尼替尼耐药提供新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
期刊最新文献
MAPK4 inhibits the early aberrant activation of B cells in rheumatoid arthritis by promoting the IRF4-SHIP1 signaling pathway. ZBP1-mediated PANoptosis is a crucial lethal form in diverse keratinocyte death modalities in UVB-induced skin injury. Ferroptosis triggers mitochondrial fragmentation via Drp1 activation. Positive feedback loop involving AMPK and CLYBL acetylation links metabolic rewiring and inflammatory responses. RNAi-based ALOX15B silencing augments keratinocyte inflammation in vitro via EGFR/STAT1/JAK1 signalling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1