Yun Rong Xu, Dai Yuan Tang, Zhen Ping Xiao, Zai Tian Huang, Heng Rui Zhang, Zi Wen Tang, Fei He
{"title":"Effects of polylactic acid scaffolds with various orientations and diameters on osteogenesis and angiogenesis.","authors":"Yun Rong Xu, Dai Yuan Tang, Zhen Ping Xiao, Zai Tian Huang, Heng Rui Zhang, Zi Wen Tang, Fei He","doi":"10.3389/fbioe.2024.1495810","DOIUrl":null,"url":null,"abstract":"<p><p>Researchers in the field of regenerative medicine have consistently focused on the biomimetic design of engineered bone materials on the basis of the microstructure of natural bone tissue. Additionally, the effects of the micromorphological characteristics of these materials on angiogenesis have garnered increasing attention. <i>In vitro</i>, the orientation and diameter of scaffold materials can exert different effects on osteogenesis and vascularisation. However, more comprehensive investigations, including <i>in vivo</i> studies, are required to confirm the results observed <i>in vitro</i>. Accordingly, in the present study, fibre scaffolds with various orientations and diameters were prepared by electrospinning with polylactic acid. The effects of the micromorphological characteristics of these scaffolds with different orientations and diameters on osteogenesis and vascularisation were systematically studied via <i>in vivo</i> experiments. The scaffolds with aligned micromorphological features positively affected osteogenesis and vascularisation, which indicated that such characteristics could be considered crucial factors when designing materials for bone repair.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"12 ","pages":"1495810"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743647/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1495810","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Researchers in the field of regenerative medicine have consistently focused on the biomimetic design of engineered bone materials on the basis of the microstructure of natural bone tissue. Additionally, the effects of the micromorphological characteristics of these materials on angiogenesis have garnered increasing attention. In vitro, the orientation and diameter of scaffold materials can exert different effects on osteogenesis and vascularisation. However, more comprehensive investigations, including in vivo studies, are required to confirm the results observed in vitro. Accordingly, in the present study, fibre scaffolds with various orientations and diameters were prepared by electrospinning with polylactic acid. The effects of the micromorphological characteristics of these scaffolds with different orientations and diameters on osteogenesis and vascularisation were systematically studied via in vivo experiments. The scaffolds with aligned micromorphological features positively affected osteogenesis and vascularisation, which indicated that such characteristics could be considered crucial factors when designing materials for bone repair.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.