Effects of polylactic acid scaffolds with various orientations and diameters on osteogenesis and angiogenesis.

IF 4.3 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Frontiers in Bioengineering and Biotechnology Pub Date : 2025-01-06 eCollection Date: 2024-01-01 DOI:10.3389/fbioe.2024.1495810
Yun Rong Xu, Dai Yuan Tang, Zhen Ping Xiao, Zai Tian Huang, Heng Rui Zhang, Zi Wen Tang, Fei He
{"title":"Effects of polylactic acid scaffolds with various orientations and diameters on osteogenesis and angiogenesis.","authors":"Yun Rong Xu, Dai Yuan Tang, Zhen Ping Xiao, Zai Tian Huang, Heng Rui Zhang, Zi Wen Tang, Fei He","doi":"10.3389/fbioe.2024.1495810","DOIUrl":null,"url":null,"abstract":"<p><p>Researchers in the field of regenerative medicine have consistently focused on the biomimetic design of engineered bone materials on the basis of the microstructure of natural bone tissue. Additionally, the effects of the micromorphological characteristics of these materials on angiogenesis have garnered increasing attention. <i>In vitro</i>, the orientation and diameter of scaffold materials can exert different effects on osteogenesis and vascularisation. However, more comprehensive investigations, including <i>in vivo</i> studies, are required to confirm the results observed <i>in vitro</i>. Accordingly, in the present study, fibre scaffolds with various orientations and diameters were prepared by electrospinning with polylactic acid. The effects of the micromorphological characteristics of these scaffolds with different orientations and diameters on osteogenesis and vascularisation were systematically studied via <i>in vivo</i> experiments. The scaffolds with aligned micromorphological features positively affected osteogenesis and vascularisation, which indicated that such characteristics could be considered crucial factors when designing materials for bone repair.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"12 ","pages":"1495810"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743647/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1495810","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers in the field of regenerative medicine have consistently focused on the biomimetic design of engineered bone materials on the basis of the microstructure of natural bone tissue. Additionally, the effects of the micromorphological characteristics of these materials on angiogenesis have garnered increasing attention. In vitro, the orientation and diameter of scaffold materials can exert different effects on osteogenesis and vascularisation. However, more comprehensive investigations, including in vivo studies, are required to confirm the results observed in vitro. Accordingly, in the present study, fibre scaffolds with various orientations and diameters were prepared by electrospinning with polylactic acid. The effects of the micromorphological characteristics of these scaffolds with different orientations and diameters on osteogenesis and vascularisation were systematically studied via in vivo experiments. The scaffolds with aligned micromorphological features positively affected osteogenesis and vascularisation, which indicated that such characteristics could be considered crucial factors when designing materials for bone repair.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同取向和直径聚乳酸支架对骨生成和血管生成的影响。
再生医学领域的研究人员一直致力于在天然骨组织微观结构的基础上进行工程骨材料的仿生设计。此外,这些材料的微形态特征对血管生成的影响已经引起了越来越多的关注。在体外,支架材料的取向和直径对成骨和血管形成有不同的影响。然而,需要更全面的研究,包括体内研究,来证实在体外观察到的结果。因此,本研究采用聚乳酸静电纺丝法制备了不同取向和直径的纤维支架。通过体内实验系统研究了不同取向和直径支架的微形态特征对成骨和血管化的影响。具有排列的微形态特征的支架对成骨和血管化有积极的影响,这表明这些特征可以被认为是设计骨修复材料时的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
期刊最新文献
Evaluating the advancements in protein language models for encoding strategies in protein function prediction: a comprehensive review. Impacts of surface wear of attachments on maxillary canine distalization with clear aligners: a three-dimensional finite element study. Placement of an elastic, biohybrid patch in a model of right heart failure with pulmonary artery banding. Cell clone selection-impact of operation modes and medium exchange strategies on clone ranking. Harnessing nanotechnology for cancer treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1