Expression and purification of E140 protein antigen fragments of Plasmodium vivax and Plasmodium berghei for serological assays.

IF 2.8 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY FEBS Open Bio Pub Date : 2025-01-15 DOI:10.1002/2211-5463.13939
Rodolfo Ferreira Marques, Edit Ábrahám, Hiromi Muramatsu, Daniel Youssef Bargieri, Norbert Pardi, Zoltán Lipinszki
{"title":"Expression and purification of E140 protein antigen fragments of Plasmodium vivax and Plasmodium berghei for serological assays.","authors":"Rodolfo Ferreira Marques, Edit Ábrahám, Hiromi Muramatsu, Daniel Youssef Bargieri, Norbert Pardi, Zoltán Lipinszki","doi":"10.1002/2211-5463.13939","DOIUrl":null,"url":null,"abstract":"<p><p>Malaria, a life-threatening disease caused by Plasmodium parasites, continues to pose a significant global health threat, with nearly 250 million infections and over 600 000 deaths reported annually by the WHO. Fighting malaria is particularly challenging partly due to the complex life cycle of the parasite. However, technological breakthroughs such as the development of the nucleoside-modified mRNA lipid nanoparticle (mRNA-LNP) vaccine platform, along with the discovery of novel conserved Plasmodium antigens such as the E140 protein, present new opportunities in malaria prevention. Importantly, production of recombinant proteins for malaria vaccine evaluation by serological assays often represents an additional hurdle because many Plasmodium proteins are complex and often contain transmembrane domains that make production and purification particularly difficult. This research protocol provides a step-by-step guide for the production and purification of P. berghei and P. vivax E140 protein fragments that can be used to test humoral immune responses against this novel malaria vaccine target. We demonstrate that the purified proteins can be successfully used in enzyme-linked immunosorbent assay (ELISA) to evaluate antigen-specific binding antibody responses in sera obtained from E140 mRNA-LNP-vaccinated mice. Therefore, these proteins can contribute to the development and evaluation of E140-based malaria vaccines.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Open Bio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/2211-5463.13939","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Malaria, a life-threatening disease caused by Plasmodium parasites, continues to pose a significant global health threat, with nearly 250 million infections and over 600 000 deaths reported annually by the WHO. Fighting malaria is particularly challenging partly due to the complex life cycle of the parasite. However, technological breakthroughs such as the development of the nucleoside-modified mRNA lipid nanoparticle (mRNA-LNP) vaccine platform, along with the discovery of novel conserved Plasmodium antigens such as the E140 protein, present new opportunities in malaria prevention. Importantly, production of recombinant proteins for malaria vaccine evaluation by serological assays often represents an additional hurdle because many Plasmodium proteins are complex and often contain transmembrane domains that make production and purification particularly difficult. This research protocol provides a step-by-step guide for the production and purification of P. berghei and P. vivax E140 protein fragments that can be used to test humoral immune responses against this novel malaria vaccine target. We demonstrate that the purified proteins can be successfully used in enzyme-linked immunosorbent assay (ELISA) to evaluate antigen-specific binding antibody responses in sera obtained from E140 mRNA-LNP-vaccinated mice. Therefore, these proteins can contribute to the development and evaluation of E140-based malaria vaccines.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
间日疟原虫和伯氏疟原虫E140蛋白抗原片段的表达和纯化及血清学检测。
疟疾是由疟原虫引起的一种危及生命的疾病,继续对全球健康构成重大威胁,世卫组织每年报告有近2.5亿人感染,60多万人死亡。防治疟疾特别具有挑战性,部分原因是这种寄生虫的生命周期很复杂。然而,核苷修饰的mRNA脂质纳米颗粒(mRNA- lnp)疫苗平台的开发以及新的保守疟原虫抗原(如E140蛋白)的发现等技术突破为疟疾预防提供了新的机遇。重要的是,通过血清学分析生产用于疟疾疫苗评价的重组蛋白往往是一个额外的障碍,因为许多疟原虫蛋白很复杂,往往含有跨膜结构域,这使得生产和纯化特别困难。该研究方案为伯氏疟原虫和间日疟原虫E140蛋白片段的生产和纯化提供了一步一步的指导,这些蛋白片段可用于测试针对这种新型疟疾疫苗靶点的体液免疫反应。我们证明纯化的蛋白可以成功地用于酶联免疫吸附试验(ELISA),以评估接种E140 mrna - lnp的小鼠血清中的抗原特异性结合抗体反应。因此,这些蛋白有助于开发和评价基于e140的疟疾疫苗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FEBS Open Bio
FEBS Open Bio BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
5.10
自引率
0.00%
发文量
173
审稿时长
10 weeks
期刊介绍: FEBS Open Bio is an online-only open access journal for the rapid publication of research articles in molecular and cellular life sciences in both health and disease. The journal''s peer review process focuses on the technical soundness of papers, leaving the assessment of their impact and importance to the scientific community. FEBS Open Bio is owned by the Federation of European Biochemical Societies (FEBS), a not-for-profit organization, and is published on behalf of FEBS by FEBS Press and Wiley. Any income from the journal will be used to support scientists through fellowships, courses, travel grants, prizes and other FEBS initiatives.
期刊最新文献
Real-world genomic landscape of colon and rectal cancer. An open chat between Prof Asifa Akhtar and Klaudia Jaczynska. Young, female and scientist: exploring barriers, challenges and opportunities. Comparative activity of dimethyl fumarate derivative IDMF in three models relevant to multiple sclerosis and psoriasis. FAM136A depletion induces mitochondrial stress and reduces mitochondrial membrane potential and ATP production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1