Research on upper limb rehabilitation assessment model based on belief rule base.

IF 4.3 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Frontiers in Bioengineering and Biotechnology Pub Date : 2025-01-06 eCollection Date: 2024-01-01 DOI:10.3389/fbioe.2024.1469598
Dawei Jiang, Zixu Zhao, Lijun Wang, Chao Zhang, Meixuan He, Tiejun Ji
{"title":"Research on upper limb rehabilitation assessment model based on belief rule base.","authors":"Dawei Jiang, Zixu Zhao, Lijun Wang, Chao Zhang, Meixuan He, Tiejun Ji","doi":"10.3389/fbioe.2024.1469598","DOIUrl":null,"url":null,"abstract":"<p><p>Rehabilitation assessments hold an irreplaceable role in the field of rehabilitative therapy. However, due to the subjectivity of traditional physicians and the variability of patient conditions, this leads to a lack of detailed grading and inaccurate assessment results. To address this issue, we developed an upper limb rehabilitation evaluation model. This model integrates muscle strength assessment methods and the Belief Rule Base (BRB), along with qualitative knowledge such as clinical rehabilitation theories and expert experiences. It also utilizes training data from actual patients, collected by an upper limb rehabilitation robot. We then optimized the BRB model's evaluation accuracy using the Fmincon algorithm and compared its result with commonly used methods such as the Back Propagation (BP) neural network and Support Vector Machine (SVM). This comparison validated the effectiveness and advancement of our BRB approach. This work has laid both a theoretical and practical groundwork for developing a clinical decision support system based on the BRB for upper limb rehabilitation evaluations.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"12 ","pages":"1469598"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743729/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1469598","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rehabilitation assessments hold an irreplaceable role in the field of rehabilitative therapy. However, due to the subjectivity of traditional physicians and the variability of patient conditions, this leads to a lack of detailed grading and inaccurate assessment results. To address this issue, we developed an upper limb rehabilitation evaluation model. This model integrates muscle strength assessment methods and the Belief Rule Base (BRB), along with qualitative knowledge such as clinical rehabilitation theories and expert experiences. It also utilizes training data from actual patients, collected by an upper limb rehabilitation robot. We then optimized the BRB model's evaluation accuracy using the Fmincon algorithm and compared its result with commonly used methods such as the Back Propagation (BP) neural network and Support Vector Machine (SVM). This comparison validated the effectiveness and advancement of our BRB approach. This work has laid both a theoretical and practical groundwork for developing a clinical decision support system based on the BRB for upper limb rehabilitation evaluations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信念规则库的上肢康复评估模型研究。
康复评估在康复治疗领域具有不可替代的作用。然而,由于传统医生的主观性和患者病情的可变性,这导致缺乏详细的分级和不准确的评估结果。为了解决这个问题,我们开发了一个上肢康复评估模型。该模型融合了肌力评估方法和信念规则库(Belief Rule Base, BRB),以及临床康复理论和专家经验等定性知识。它还利用上肢康复机器人收集的实际患者的训练数据。然后,我们使用Fmincon算法优化了BRB模型的评估精度,并将其结果与常用方法如BP神经网络和支持向量机(SVM)进行了比较。这个比较验证了我们的BRB方法的有效性和先进性。本研究为开发基于BRB的上肢康复评估临床决策支持系统奠定了理论和实践基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
期刊最新文献
Evaluating the advancements in protein language models for encoding strategies in protein function prediction: a comprehensive review. Impacts of surface wear of attachments on maxillary canine distalization with clear aligners: a three-dimensional finite element study. Placement of an elastic, biohybrid patch in a model of right heart failure with pulmonary artery banding. Cell clone selection-impact of operation modes and medium exchange strategies on clone ranking. Harnessing nanotechnology for cancer treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1