Yogesh Rai, Ankit Kumar Tiwari, Rakesh Pandey, B S Dwarakanath, Anant Narayan Bhatt
{"title":"Hyper-energy metabolism of oxidative phosphorylation and enhanced glycolysis contributes to radioresistance in glioma cells.","authors":"Yogesh Rai, Ankit Kumar Tiwari, Rakesh Pandey, B S Dwarakanath, Anant Narayan Bhatt","doi":"10.1080/10715762.2025.2456740","DOIUrl":null,"url":null,"abstract":"<p><p>The concept of dual-state hyper-energy metabolism characterized by elevated glycolysis and OxPhos has gained considerable attention during tumor growth and metastasis in different malignancies. However, it is largely unknown how such metabolic phenotypes influence the radiation response in aggressive cancers. Therefore, the present study aimed to investigate the impact of hyper-energy metabolism (increased glycolysis and OxPhos) on the radiation response of a human glioma cell line. Modulation of the mitochondrial electron transport chain was carried out using a 2,4-dinitrophenol (DNP). Metabolic characterization was carried out by assessing glucose uptake, lactate production, mitochondrial mass, membrane potential, and ATP production. The radiation response was examined by cell growth, clonogenic survival, and cell death assays. Macromolecular oxidation was assessed by DNA damage, lipid peroxidation, and protein carbonylation assay. Hypermetabolic OPM-BMG cells exhibited a significant increase in glycolysis and OxPhos following irradiation as compared to the parental BMG-1 cells. Enhanced radioresistance of OPM-BMG cells was evidenced by the increase in α/β ratio (9.58) and D1 dose (4.18 Gy) as compared to 4.36 and 2.19 Gy in BMG-1 cells respectively. Moreover, OPM-BMG cells were found to exhibit increased resistance against radiation-induced cell death, and macromolecular oxidation as compared to BMG-1 cells. Inhibition of glycolysis and mitochondrial complex-II significantly enhanced the radiosensitivity of OPM-BMG cells compared to BMG-1 cells. Our results demonstrate that the hyper-energy metabolism of increased glycolysis and OxPhos confer radioresistance. Consequently targeting glycolysis and OxPhos in combination with radiation may overcome therapeutic resistance in aggressive cancers like glioma.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"1-12"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2025.2456740","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The concept of dual-state hyper-energy metabolism characterized by elevated glycolysis and OxPhos has gained considerable attention during tumor growth and metastasis in different malignancies. However, it is largely unknown how such metabolic phenotypes influence the radiation response in aggressive cancers. Therefore, the present study aimed to investigate the impact of hyper-energy metabolism (increased glycolysis and OxPhos) on the radiation response of a human glioma cell line. Modulation of the mitochondrial electron transport chain was carried out using a 2,4-dinitrophenol (DNP). Metabolic characterization was carried out by assessing glucose uptake, lactate production, mitochondrial mass, membrane potential, and ATP production. The radiation response was examined by cell growth, clonogenic survival, and cell death assays. Macromolecular oxidation was assessed by DNA damage, lipid peroxidation, and protein carbonylation assay. Hypermetabolic OPM-BMG cells exhibited a significant increase in glycolysis and OxPhos following irradiation as compared to the parental BMG-1 cells. Enhanced radioresistance of OPM-BMG cells was evidenced by the increase in α/β ratio (9.58) and D1 dose (4.18 Gy) as compared to 4.36 and 2.19 Gy in BMG-1 cells respectively. Moreover, OPM-BMG cells were found to exhibit increased resistance against radiation-induced cell death, and macromolecular oxidation as compared to BMG-1 cells. Inhibition of glycolysis and mitochondrial complex-II significantly enhanced the radiosensitivity of OPM-BMG cells compared to BMG-1 cells. Our results demonstrate that the hyper-energy metabolism of increased glycolysis and OxPhos confer radioresistance. Consequently targeting glycolysis and OxPhos in combination with radiation may overcome therapeutic resistance in aggressive cancers like glioma.
期刊介绍:
Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.