{"title":"Knockdown of TBRG4 suppresses the migration, invasion, and epithelial-to-mesenchymal transition of pancreatic cancer cells via TGF-β/smad3 signaling.","authors":"Xiao Ye, Xiaolin Zheng, Ling Zhu","doi":"10.14670/HH-18-871","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Pancreatic cancer (PC) is one of the deadliest malignancies worldwide, with a low five-year survival rate of less than 10%. Transforming growth factor β regulator 4 (TBRG4) is differentially expressed in PC tissues, but its specific functions and regulatory role in PC have not been clarified.</p><p><strong>Methods: </strong>TBRG4 mRNA expression in PC cells was measured by qRT-PCR. Protein levels of TBRG4, key markers related to the epithelial-mesenchymal transition (EMT) process, and factors related to the TGF-β/smad3 pathway were quantified by western blot. The migratory and invasive abilities of PC cells were evaluated by wound healing and Transwell assays, respectively. Spearman's correlation analysis was performed to analyze the expression correlation between TBRG4 and TGF-β1 (or SMAD3). Xenograft mouse models were established to explore the <i>in vivo</i> role of TBRG4.</p><p><strong>Results: </strong>The mRNA and protein expression of TBRG4 were elevated in PC cells. TBRG4 knockdown repressed PC cell migration, invasion, and the EMT process. Moreover, TBRG4 activated TGF-β/smad3 signaling in PC cells and positively correlated with TGF-β1 (or SMAD3) expression in PC tissues based on bioinformatics analysis. Furthermore, SRI-011381 (an agonist of TGF-β1) counteracted the inhibitory influence of TBRG4 knockdown on PC cellular behaviors, and SB431542 (an inhibitor of the TGF-β type I receptor) treatment countervailed the promoting influence of TBRG4 overexpression on PC cell invasion, migration, and EMT. Results of <i>in vivo</i> assays verified that TBRG4 silencing inhibited tumorigenesis and TGF-β/smad3 signaling.</p><p><strong>Conclusion: </strong>The silencing of TBRG4 inhibits PC cell invasion, migration, EMT, and tumorigenesis by inactivating TGF-β/smad3 signaling.</p>","PeriodicalId":13164,"journal":{"name":"Histology and histopathology","volume":" ","pages":"18871"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histology and histopathology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14670/HH-18-871","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Pancreatic cancer (PC) is one of the deadliest malignancies worldwide, with a low five-year survival rate of less than 10%. Transforming growth factor β regulator 4 (TBRG4) is differentially expressed in PC tissues, but its specific functions and regulatory role in PC have not been clarified.
Methods: TBRG4 mRNA expression in PC cells was measured by qRT-PCR. Protein levels of TBRG4, key markers related to the epithelial-mesenchymal transition (EMT) process, and factors related to the TGF-β/smad3 pathway were quantified by western blot. The migratory and invasive abilities of PC cells were evaluated by wound healing and Transwell assays, respectively. Spearman's correlation analysis was performed to analyze the expression correlation between TBRG4 and TGF-β1 (or SMAD3). Xenograft mouse models were established to explore the in vivo role of TBRG4.
Results: The mRNA and protein expression of TBRG4 were elevated in PC cells. TBRG4 knockdown repressed PC cell migration, invasion, and the EMT process. Moreover, TBRG4 activated TGF-β/smad3 signaling in PC cells and positively correlated with TGF-β1 (or SMAD3) expression in PC tissues based on bioinformatics analysis. Furthermore, SRI-011381 (an agonist of TGF-β1) counteracted the inhibitory influence of TBRG4 knockdown on PC cellular behaviors, and SB431542 (an inhibitor of the TGF-β type I receptor) treatment countervailed the promoting influence of TBRG4 overexpression on PC cell invasion, migration, and EMT. Results of in vivo assays verified that TBRG4 silencing inhibited tumorigenesis and TGF-β/smad3 signaling.
Conclusion: The silencing of TBRG4 inhibits PC cell invasion, migration, EMT, and tumorigenesis by inactivating TGF-β/smad3 signaling.
期刊介绍:
HISTOLOGY AND HISTOPATHOLOGY is a peer-reviewed international journal, the purpose of which is to publish original and review articles in all fields of the microscopical morphology, cell biology and tissue engineering; high quality is the overall consideration. Its format is the standard international size of 21 x 27.7 cm. One volume is published every year (more than 1,300 pages, approximately 90 original works and 40 reviews). Each volume consists of 12 numbers published monthly online. The printed version of the journal includes 4 books every year; each of them compiles 3 numbers previously published online.