Ju-Ping Hu, Si-Jia Deng, Lin Gu, Lin Li, Lei Tu, Ju-Lin Li, Jian-Xia Tang, Guo-Ding Zhu
{"title":"Fungi on the cuticle surface increase the resistance of Aedes albopictus to deltamethrin.","authors":"Ju-Ping Hu, Si-Jia Deng, Lin Gu, Lin Li, Lei Tu, Ju-Lin Li, Jian-Xia Tang, Guo-Ding Zhu","doi":"10.1111/1744-7917.13503","DOIUrl":null,"url":null,"abstract":"<p><p>Aedes albopictus (Ae. albopictus) is widely distributed and can transmit many infectious diseases, and insecticide-based interventions play an important role in vector control. However, increased insecticide resistance has become a severe public health problem, and the clarification of its detailed mechanism is a matter of urgence. This study found that target-site resistance and metabolic resistance could not fully explain insecticide resistance in field Ae. albopictus, and there were likely other resistance mechanisms involved. The 16S and internal transcribed spacer sequencing revealed significant differences in the species compositions of the cuticle surface symbiotic bacteria and fungi between deltamethrin (DM)-resistant (DR) and DM-susceptible (DS) Ae. albopictus. Additionally, the abundances of Serratia spp. and Candida spp. significantly increased after DM treatment. Furthermore, 2 fungi (Rhodotorula mucilaginosa and Candida melibiosica) and 3 bacteria (Serratia marcescens, Klebsiella aerogenes, and Serratia sp.) isolated from DR Ae. albopictus can use DM as their sole carbon source. After reinoculation onto the cuticle surface of DS Ae. albopictus, R. mucilaginosa and C. melibiosica significantly enhanced the DM resistance of Ae. albopictus. Moreover, transcriptome sequencing of the surviving Ae. albopictus after DM exposure revealed that the gene expression of cytochrome P450 enzymes and glutathione-S-transferases increased, suggesting that besides the direct degradation, the candidate degrading microbes could also cause insecticide resistance via indirect enhancement of mosquito gene expression. In conclusion, we demonstrated that the cuticle surface symbiotic microbes were involved in the development of insecticide resistance in Ae. albopictus, providing novel and supplementary insights into insecticide resistance mechanisms.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13503","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aedes albopictus (Ae. albopictus) is widely distributed and can transmit many infectious diseases, and insecticide-based interventions play an important role in vector control. However, increased insecticide resistance has become a severe public health problem, and the clarification of its detailed mechanism is a matter of urgence. This study found that target-site resistance and metabolic resistance could not fully explain insecticide resistance in field Ae. albopictus, and there were likely other resistance mechanisms involved. The 16S and internal transcribed spacer sequencing revealed significant differences in the species compositions of the cuticle surface symbiotic bacteria and fungi between deltamethrin (DM)-resistant (DR) and DM-susceptible (DS) Ae. albopictus. Additionally, the abundances of Serratia spp. and Candida spp. significantly increased after DM treatment. Furthermore, 2 fungi (Rhodotorula mucilaginosa and Candida melibiosica) and 3 bacteria (Serratia marcescens, Klebsiella aerogenes, and Serratia sp.) isolated from DR Ae. albopictus can use DM as their sole carbon source. After reinoculation onto the cuticle surface of DS Ae. albopictus, R. mucilaginosa and C. melibiosica significantly enhanced the DM resistance of Ae. albopictus. Moreover, transcriptome sequencing of the surviving Ae. albopictus after DM exposure revealed that the gene expression of cytochrome P450 enzymes and glutathione-S-transferases increased, suggesting that besides the direct degradation, the candidate degrading microbes could also cause insecticide resistance via indirect enhancement of mosquito gene expression. In conclusion, we demonstrated that the cuticle surface symbiotic microbes were involved in the development of insecticide resistance in Ae. albopictus, providing novel and supplementary insights into insecticide resistance mechanisms.
期刊介绍:
Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.