Li Cui, Zizhao Mai, Ye Lu, Jiarong Zheng, Pei Lin, Xu Chen, Yucheng Zheng, Yunfan Lin, Bing Guo, Xinyuan Zhao
{"title":"Laboratory investigation of METTL7A driving MSC osteogenic differentiation through YAP1 translation enhancement via eIF4F recruitment.","authors":"Li Cui, Zizhao Mai, Ye Lu, Jiarong Zheng, Pei Lin, Xu Chen, Yucheng Zheng, Yunfan Lin, Bing Guo, Xinyuan Zhao","doi":"10.1111/iej.14198","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Effective control of mesenchymal stem cell (MSC) differentiation towards osteogenic lineages is fundamental for bone regeneration. This study elucidates the regulatory role of methyltransferase like 7A (METTL7A) in the osteogenic differentiation of MSCs.</p><p><strong>Methodology: </strong>Alkaline phosphatase staining, Alizarin Red S staining, western blotting, and in vivo studies were conducted to determine the effects of METTL7A depletion or overexpression on the osteogenic differentiation of various types of MSCs. Then the downstream signalling pathways regulated by METTL7A in MSCs were further investigated.</p><p><strong>Results: </strong>Our findings indicate that METTL7A expression significantly increases during the osteogenic differentiation of MSCs. Furthermore, depletion of METTL7A hindered, whereas its overexpression enhanced, the osteogenic differentiation of MSCs. Mechanistically, METTL7A influences MSC osteogenic differentiation by activating the YAP1-TEAD1 signalling pathway. It enhances YAP1 expression not only by stabilising YAP1 mRNA but also, crucially, by recruiting the eIF4F complex, thereby boosting the translation efficiency of YAP1 mRNA. Additionally, the YAP1/TEAD1 complex transcriptionally regulates METTL7A expression, creating a positive feedback loop that amplifies osteogenic differentiation.</p><p><strong>Conclusions: </strong>Overall, our study uncovers a previously unknown molecular mechanism of MSC osteogenic differentiation and suggests that activating METTL7A could offer new avenues for enhancing bone regeneration.</p>","PeriodicalId":13724,"journal":{"name":"International endodontic journal","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International endodontic journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/iej.14198","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: Effective control of mesenchymal stem cell (MSC) differentiation towards osteogenic lineages is fundamental for bone regeneration. This study elucidates the regulatory role of methyltransferase like 7A (METTL7A) in the osteogenic differentiation of MSCs.
Methodology: Alkaline phosphatase staining, Alizarin Red S staining, western blotting, and in vivo studies were conducted to determine the effects of METTL7A depletion or overexpression on the osteogenic differentiation of various types of MSCs. Then the downstream signalling pathways regulated by METTL7A in MSCs were further investigated.
Results: Our findings indicate that METTL7A expression significantly increases during the osteogenic differentiation of MSCs. Furthermore, depletion of METTL7A hindered, whereas its overexpression enhanced, the osteogenic differentiation of MSCs. Mechanistically, METTL7A influences MSC osteogenic differentiation by activating the YAP1-TEAD1 signalling pathway. It enhances YAP1 expression not only by stabilising YAP1 mRNA but also, crucially, by recruiting the eIF4F complex, thereby boosting the translation efficiency of YAP1 mRNA. Additionally, the YAP1/TEAD1 complex transcriptionally regulates METTL7A expression, creating a positive feedback loop that amplifies osteogenic differentiation.
Conclusions: Overall, our study uncovers a previously unknown molecular mechanism of MSC osteogenic differentiation and suggests that activating METTL7A could offer new avenues for enhancing bone regeneration.
期刊介绍:
The International Endodontic Journal is published monthly and strives to publish original articles of the highest quality to disseminate scientific and clinical knowledge; all manuscripts are subjected to peer review. Original scientific articles are published in the areas of biomedical science, applied materials science, bioengineering, epidemiology and social science relevant to endodontic disease and its management, and to the restoration of root-treated teeth. In addition, review articles, reports of clinical cases, book reviews, summaries and abstracts of scientific meetings and news items are accepted.
The International Endodontic Journal is essential reading for general dental practitioners, specialist endodontists, research, scientists and dental teachers.