Assessment of Vertebral Bone Marrow Perfusion, Fat/Water Content, and Trabecular Bone Changes Using Multimodal MRI and Micro-CT in a Rat Model of Chronic Kidney Disease.
{"title":"Assessment of Vertebral Bone Marrow Perfusion, Fat/Water Content, and Trabecular Bone Changes Using Multimodal MRI and Micro-CT in a Rat Model of Chronic Kidney Disease.","authors":"Guo-Shu Huang, Shih-Wei Chiang, Yi-Jen Peng, Skye Hsin-Hsien Yeh, Yu-Juei Hsu, Yu-Ching Chou, Heng-Han Chang, Herng-Sheng Lee, Ying-Chun Liu, Chao-Ying Wang","doi":"10.1002/jsp2.70039","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Disturbances in calcium and phosphorus homeostasis resulting from chronic kidney disease (CKD) may lead to atherosclerotic changes in blood vessels, potentially altering bone marrow perfusion. Our study aimed to investigate vertebral bone marrow perfusion using dynamic contrast-enhanced (DCE) MRI with a pharmacokinetic model. We also measured possible changes in water and fat content and bony trabeculae using T2* quantification, MR spectroscopy (MRS), and microcomputed tomography (μCT).</p><p><strong>Methods: </strong>Twelve rats were randomly separated into a normal control group and a CKD (5/6 nephrectomy) group. Their lumbar spines were imaged, with monitoring of the L5 vertebral body conducted at 0, 8, 16, 30, and 43 weeks. After Week 43, all rats were sacrificed, and histologic changes were correlated with MRI and μCT results.</p><p><strong>Results: </strong>The CKD group demonstrated significantly lower <i>A</i> and <i>k</i> <sub>el</sub> values (<i>p</i> < 0.05), significantly increased T2* values (<i>p</i> < 0.05), significantly decreased fat content and trabeculation (<i>p</i> < 0.05), sinusoidal dilatation, and decreased adipocytes in the vertebral bone marrow.</p><p><strong>Conclusion: </strong>Using quantitative MRI and μCT to assess CKD-related arthropathy of the vertebral body is feasible. Lumbar spine bone marrow perfusion deficiency in experimental CKD may be associated with decreased fat content, increased water content, and sparse trabeculation.</p>","PeriodicalId":14876,"journal":{"name":"JOR Spine","volume":"8 1","pages":"e70039"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745900/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOR Spine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jsp2.70039","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Disturbances in calcium and phosphorus homeostasis resulting from chronic kidney disease (CKD) may lead to atherosclerotic changes in blood vessels, potentially altering bone marrow perfusion. Our study aimed to investigate vertebral bone marrow perfusion using dynamic contrast-enhanced (DCE) MRI with a pharmacokinetic model. We also measured possible changes in water and fat content and bony trabeculae using T2* quantification, MR spectroscopy (MRS), and microcomputed tomography (μCT).
Methods: Twelve rats were randomly separated into a normal control group and a CKD (5/6 nephrectomy) group. Their lumbar spines were imaged, with monitoring of the L5 vertebral body conducted at 0, 8, 16, 30, and 43 weeks. After Week 43, all rats were sacrificed, and histologic changes were correlated with MRI and μCT results.
Results: The CKD group demonstrated significantly lower A and kel values (p < 0.05), significantly increased T2* values (p < 0.05), significantly decreased fat content and trabeculation (p < 0.05), sinusoidal dilatation, and decreased adipocytes in the vertebral bone marrow.
Conclusion: Using quantitative MRI and μCT to assess CKD-related arthropathy of the vertebral body is feasible. Lumbar spine bone marrow perfusion deficiency in experimental CKD may be associated with decreased fat content, increased water content, and sparse trabeculation.