Jazmin Calyeca, Zakarie Hussein, Zheng Hong Tan, Lumei Liu, Sayali Dharmadhikari, Kimberly M Shontz, Tatyana A Vetter, Christopher K Breuer, Susan D Reynolds, Tendy Chiang
{"title":"Orchestrated response from heterogenous fibroblast subsets contributes to repair from surgery-induced stress after airway reconstruction.","authors":"Jazmin Calyeca, Zakarie Hussein, Zheng Hong Tan, Lumei Liu, Sayali Dharmadhikari, Kimberly M Shontz, Tatyana A Vetter, Christopher K Breuer, Susan D Reynolds, Tendy Chiang","doi":"10.1172/jci.insight.186263","DOIUrl":null,"url":null,"abstract":"<p><p>Surgery of the tracheobronchial tree carries high morbidity, with over half of the complications occurring at the anastomosis. Although fibroblasts are crucial in airway wound healing, the underlying cellular and molecular mechanisms in airway reconstruction remain unknown. We hypothesized that airway reconstruction initiates a surgery-induced stress (SIS) response, altering fibroblast communication within airway tissues. Using single-cell RNA-Seq, we analyzed native and reconstructed airways and identified 5 fibroblast subpopulations, each with distinct spatial distributions across anastomotic, submucosal, perichondrial, and paratracheal areas. During homeostasis, adventitial and airway fibroblasts (Adventitial-Fb and Airway-Fb, respectively) maintained tissue structure and created cellular niches by regulating ECM turnover. Under SIS, perichondrial fibroblasts (PC-Fb) exhibited chondroprogenitor-like gene signatures, and immune-recruiting fibroblasts (IR-Fb) facilitated cell infiltration. Cthrc1-activated fibroblasts (Cthrc1+ Fb), mainly derived from Adventitial-Fb, primarily contributed to fibrotic scar formation and collagen production, mediated by TGF-β. Furthermore, repeated SIS created an imbalance in fibroblast states favoring emergence of CTHRC1+ Fb and leading to impaired fibroblasts-basal cell crosstalk. Collectively, these data identify PC, IR, and Cthrc1+ Fb as a signaling hub, with SIS emerging as a mechanism initiating airway remodeling after reconstruction that, if not controlled, may lead to complications such as stenosis or anastomotic breakdown.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.186263","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Surgery of the tracheobronchial tree carries high morbidity, with over half of the complications occurring at the anastomosis. Although fibroblasts are crucial in airway wound healing, the underlying cellular and molecular mechanisms in airway reconstruction remain unknown. We hypothesized that airway reconstruction initiates a surgery-induced stress (SIS) response, altering fibroblast communication within airway tissues. Using single-cell RNA-Seq, we analyzed native and reconstructed airways and identified 5 fibroblast subpopulations, each with distinct spatial distributions across anastomotic, submucosal, perichondrial, and paratracheal areas. During homeostasis, adventitial and airway fibroblasts (Adventitial-Fb and Airway-Fb, respectively) maintained tissue structure and created cellular niches by regulating ECM turnover. Under SIS, perichondrial fibroblasts (PC-Fb) exhibited chondroprogenitor-like gene signatures, and immune-recruiting fibroblasts (IR-Fb) facilitated cell infiltration. Cthrc1-activated fibroblasts (Cthrc1+ Fb), mainly derived from Adventitial-Fb, primarily contributed to fibrotic scar formation and collagen production, mediated by TGF-β. Furthermore, repeated SIS created an imbalance in fibroblast states favoring emergence of CTHRC1+ Fb and leading to impaired fibroblasts-basal cell crosstalk. Collectively, these data identify PC, IR, and Cthrc1+ Fb as a signaling hub, with SIS emerging as a mechanism initiating airway remodeling after reconstruction that, if not controlled, may lead to complications such as stenosis or anastomotic breakdown.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.