No bones about it: regulatory T cells promote fracture healing.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Journal of Clinical Investigation Pub Date : 2025-01-16 DOI:10.1172/JCI188368
Jason W Griffith, Andrew D Luster
{"title":"No bones about it: regulatory T cells promote fracture healing.","authors":"Jason W Griffith, Andrew D Luster","doi":"10.1172/JCI188368","DOIUrl":null,"url":null,"abstract":"<p><p>Regulatory T cells (Tregs) are increasingly being recognized for their role in promoting tissue repair. In this issue of the JCI, Chen et al. found that Tregs at the site of bone injury contribute to bone repair. The CCL1/CCR8 chemokine system promoted the accumulation of Tregs at the site of bone injury, where Tregs supported skeletal stem cell (SSC) accumulation and osteogenic differentiation. CCL1 increased the transcription factor basic leucine zipper ATF-like transcription factor (BATF) in CCR8+ Tregs, which induced the secretion of progranulin that promoted SSC osteogenic function and new bone formation. This study highlights the ever-expanding role of Tregs in tissue repair by demonstrating their ability to expand stem cells at a site of injury.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 2","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735088/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI188368","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Regulatory T cells (Tregs) are increasingly being recognized for their role in promoting tissue repair. In this issue of the JCI, Chen et al. found that Tregs at the site of bone injury contribute to bone repair. The CCL1/CCR8 chemokine system promoted the accumulation of Tregs at the site of bone injury, where Tregs supported skeletal stem cell (SSC) accumulation and osteogenic differentiation. CCL1 increased the transcription factor basic leucine zipper ATF-like transcription factor (BATF) in CCR8+ Tregs, which induced the secretion of progranulin that promoted SSC osteogenic function and new bone formation. This study highlights the ever-expanding role of Tregs in tissue repair by demonstrating their ability to expand stem cells at a site of injury.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
毫无疑问:调节性T细胞促进骨折愈合。
调节性T细胞(Regulatory T cells, Tregs)在促进组织修复中的作用越来越被人们所认识。在这一期的JCI中,Chen等人发现骨损伤部位的Tregs有助于骨修复。CCL1/CCR8趋化因子系统促进Tregs在骨损伤部位的积累,其中Tregs支持骨干细胞(SSC)的积累和成骨分化。CCL1增加CCR8+ Tregs的转录因子碱性亮氨酸拉链atf样转录因子(BATF),诱导前颗粒蛋白分泌,促进SSC成骨功能和新骨形成。这项研究通过证明treg在损伤部位扩增干细胞的能力,强调了treg在组织修复中不断扩大的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
期刊最新文献
Aberrant ERK signaling in astrocytes impairs learning and memory in RASopathy-associated BRAF mutant mouse models. Asparagine drives immune evasion in bladder cancer via RIG-I stability and type I IFN signaling. Reduced EIF6 dosage attenuates TP53 activation in models of Shwachman-Diamond syndrome. Super-enhancer-driven EFNA1 fuels tumor progression in cervical cancer via the FOSL2-Src/AKT/STAT3 axis. Purifying and profiling lysosomes to expand understanding of lysosomal dysfunction-associated diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1