{"title":"Icariin improves learning and memory function by enhancing HRD1-mediated ubiquitination of amyloid precursor protein in APP/PS1 mice.","authors":"Xia Chen, Cong Lin, Chengfen He, Kaikai Li, Jianmei Gao, Qihai Gong, Fei Li","doi":"10.1177/13872877241303949","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>One of the hallmark pathological characteristics of Alzheimer's disease (AD) is amyloid-β (Aβ) accumulated in brain, which is mainly derived from the proteolytic processing of amyloid-β protein precursor (AβPP). The ubiquitin-proteasome system is able to reduce Aβ generation by ubiquitination and degradation of AβPP. Icariin (ICA), a flavonoid isolated from <i>Epimedium brevicornum</i> Maxim., has been reported that it could regulate the metabolism of AβPP and reduce the Aβ level in AD <i>in vivo</i> and <i>in vitro</i> models.</p><p><strong>Objective: </strong>To investigate whether the effect of ICA on AβPP and Aβ is related to AβPP ubiquitination.</p><p><strong>Methods: </strong>We used <i>in vivo</i> and <i>in vitro</i> models to observe the effect of ICA on AβPP ubiquitination as well as to investigate the effect of HMG-CoA reductase degradation protein 1 (HRD1), an E3 ubiquitin-protein ligase, on the processing of AβPP ubiquitination.</p><p><strong>Results: </strong>This study showed that ICA improved the cognitive abilities of APP/PS1 AD mice in Morris Water Maze and Y-maze tests, upregulated HRD1 expression, subsequently elevated the total ubiquitination and K48-linked polyubiquitination of AβPP level, as well as increased AβPP degradation. Moreover, silenced <i>HRD1</i> gene abolished the aforementioned effects of ICA. Furthermore, ICA decreased the location of AβPP in the early endosome, where AβPP is cleaved into Aβ, evidenced by reducing the co-localization of AβPP and early endosome antigen 1 (EEA1).</p><p><strong>Conclusions: </strong>This study demonstrated that ICA increased AβPP degradation by upregulating HRD1 mediated ubiquitination.</p>","PeriodicalId":14929,"journal":{"name":"Journal of Alzheimer's Disease","volume":" ","pages":"13872877241303949"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/13872877241303949","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: One of the hallmark pathological characteristics of Alzheimer's disease (AD) is amyloid-β (Aβ) accumulated in brain, which is mainly derived from the proteolytic processing of amyloid-β protein precursor (AβPP). The ubiquitin-proteasome system is able to reduce Aβ generation by ubiquitination and degradation of AβPP. Icariin (ICA), a flavonoid isolated from Epimedium brevicornum Maxim., has been reported that it could regulate the metabolism of AβPP and reduce the Aβ level in AD in vivo and in vitro models.
Objective: To investigate whether the effect of ICA on AβPP and Aβ is related to AβPP ubiquitination.
Methods: We used in vivo and in vitro models to observe the effect of ICA on AβPP ubiquitination as well as to investigate the effect of HMG-CoA reductase degradation protein 1 (HRD1), an E3 ubiquitin-protein ligase, on the processing of AβPP ubiquitination.
Results: This study showed that ICA improved the cognitive abilities of APP/PS1 AD mice in Morris Water Maze and Y-maze tests, upregulated HRD1 expression, subsequently elevated the total ubiquitination and K48-linked polyubiquitination of AβPP level, as well as increased AβPP degradation. Moreover, silenced HRD1 gene abolished the aforementioned effects of ICA. Furthermore, ICA decreased the location of AβPP in the early endosome, where AβPP is cleaved into Aβ, evidenced by reducing the co-localization of AβPP and early endosome antigen 1 (EEA1).
Conclusions: This study demonstrated that ICA increased AβPP degradation by upregulating HRD1 mediated ubiquitination.
期刊介绍:
The Journal of Alzheimer''s Disease (JAD) is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer''s disease. The journal publishes research reports, reviews, short communications, hypotheses, ethics reviews, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer''s disease.