Predicting Time to First Rejection Episode in Lung Transplant Patients Using a Comprehensive Multi-Indicator Model.

IF 4.2 2区 医学 Q2 IMMUNOLOGY Journal of Inflammation Research Pub Date : 2025-01-10 eCollection Date: 2025-01-01 DOI:10.2147/JIR.S495515
Youpeng Chen, Enzhong Li, Qingqing Yang, Zhenglin Chang, Baodan Yu, Jiancai Lu, Haojie Wu, Peiyan Zheng, Zhangkai J Cheng, Baoqing Sun
{"title":"Predicting Time to First Rejection Episode in Lung Transplant Patients Using a Comprehensive Multi-Indicator Model.","authors":"Youpeng Chen, Enzhong Li, Qingqing Yang, Zhenglin Chang, Baodan Yu, Jiancai Lu, Haojie Wu, Peiyan Zheng, Zhangkai J Cheng, Baoqing Sun","doi":"10.2147/JIR.S495515","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Rejection hinders long-term survival in lung transplantation, and no widely accepted biomarkers exist to predict rejection risk. This study aimed to develop and validate a prognostic model using laboratory data to predict the time to first rejection episode in lung transplant recipients.</p><p><strong>Methods: </strong>Data from 160 lung transplant recipients were retrospectively collected. Univariate Cox analysis assessed the impact of patient characteristics on time to first rejection episode. Kaplan-Meier survival analysis, LASSO regression, and multivariate Cox analysis were used to select prognostic indicators and develop a riskScore model. Model performance was evaluated using Kaplan-Meier analysis, time-dependent ROC curves, and multivariate Cox regression.</p><p><strong>Results: </strong>Patient characteristics were not significantly associated with the time to the first rejection episode. Six laboratory indicators-Activated Partial Thromboplastin Time, IL-10, estimated intrapulmonary shunt, 50% Hemolytic Complement, IgA, and Complement Component 3-were identified as significant predictors and integrated into the riskScore. The riskScore demonstrated good predictive performance. It outperformed individual indicators, was an independent risk factor for rejection, and was validated in the validation dataset.</p><p><strong>Conclusion: </strong>The riskScore model effectively predicts time to first rejection episode in lung transplant recipients.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"477-491"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734520/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S495515","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Rejection hinders long-term survival in lung transplantation, and no widely accepted biomarkers exist to predict rejection risk. This study aimed to develop and validate a prognostic model using laboratory data to predict the time to first rejection episode in lung transplant recipients.

Methods: Data from 160 lung transplant recipients were retrospectively collected. Univariate Cox analysis assessed the impact of patient characteristics on time to first rejection episode. Kaplan-Meier survival analysis, LASSO regression, and multivariate Cox analysis were used to select prognostic indicators and develop a riskScore model. Model performance was evaluated using Kaplan-Meier analysis, time-dependent ROC curves, and multivariate Cox regression.

Results: Patient characteristics were not significantly associated with the time to the first rejection episode. Six laboratory indicators-Activated Partial Thromboplastin Time, IL-10, estimated intrapulmonary shunt, 50% Hemolytic Complement, IgA, and Complement Component 3-were identified as significant predictors and integrated into the riskScore. The riskScore demonstrated good predictive performance. It outperformed individual indicators, was an independent risk factor for rejection, and was validated in the validation dataset.

Conclusion: The riskScore model effectively predicts time to first rejection episode in lung transplant recipients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用综合多指标模型预测肺移植患者首次排斥反应发生时间。
背景:排斥反应阻碍肺移植患者的长期生存,目前还没有被广泛接受的生物标志物来预测排斥反应的风险。本研究旨在利用实验室数据开发和验证预测肺移植受者首次排斥反应发生时间的预后模型。方法:回顾性收集160例肺移植受者的资料。单因素Cox分析评估了患者特征对首次排斥反应发生时间的影响。采用Kaplan-Meier生存分析、LASSO回归和多变量Cox分析选择预后指标并建立风险评分模型。采用Kaplan-Meier分析、随时间变化的ROC曲线和多变量Cox回归评估模型的性能。结果:患者特征与第一次排斥反应发生时间无显著相关性。六个实验室指标-活化部分凝血活素时间,IL-10,估计肺内分流,50%溶血性补体,IgA和补体成分3-被确定为重要的预测因素并纳入风险评分。riskScore显示出良好的预测性能。它优于单个指标,是拒绝的独立风险因素,并在验证数据集中得到验证。结论:riskScore模型可有效预测肺移植受者发生首次排斥反应的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Inflammation Research
Journal of Inflammation Research Immunology and Microbiology-Immunology
CiteScore
6.10
自引率
2.20%
发文量
658
审稿时长
16 weeks
期刊介绍: An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.
期刊最新文献
Quzhou Aurantii Fructus Flavonoids Ameliorate Inflammatory Responses, Intestinal Barrier Dysfunction in DSS-Induced Colitis by Modulating PI3K/AKT Signaling Pathway and Gut Microbiome. Rat Model of Cystic Neutrophilic Granulomatous Mastitis by Corynebacterium Kroppenstedtii. RECK as a Potential Crucial Molecule for the Targeted Treatment of Sepsis. Role of Aging in Ulcerative Colitis Pathogenesis: A Focus on ETS1 as a Promising Biomarker. Elucidating the Role of HIF-1α/YAP Signaling Pathway in Regulating Inflammation in Human Periodontal Stem Cells: An in vitro Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1