Mio Ishibashi , Keita Shibata , Michishige Terasaki , Yuta Saito , Sho-ichi Yamagishi , Keiji Hasumi , Koji Nobe
{"title":"SMTP-44D alleviates diabetic retinopathy by suppressing inflammation and oxidative stress in in vivo and in vitro models","authors":"Mio Ishibashi , Keita Shibata , Michishige Terasaki , Yuta Saito , Sho-ichi Yamagishi , Keiji Hasumi , Koji Nobe","doi":"10.1016/j.jphs.2024.12.004","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic retinopathy (DR) is the leading cause of blindness among working-age adults, and inflammation and oxidative stress contribute to DR development. However, no effective treatments are currently approved for DR. Therefore, this study aimed to investigate the effects of SMTP-44D—a <em>Stachybotrys microspora-</em>derived compound with anti-inflammatory and antioxidant properties—on DR in <em>in vivo</em> and <em>in vitro</em> models. Diabetes was induced in rats using 60 mg/kg streptozocin, followed by treatment with SMTP-44D every second day. Retinal function was assessed using electroretinography every 2 months for 8 months. SMTP-44D prevented diabetes-induced b-wave amplitude reductions in electroretinogram and decreased retinal ganglion cell apoptosis. SMTP-44D also reduced the accumulation of advanced glycation end-products (AGEs), AGE receptors, and 8-hydroxydeoxyguanosine in the retina. Furthermore, when rat retinal Müller cells were cultured in DMEM medium containing 35 mM glucose (high glucose, HG) and treated with SMTP-44D for 24 h, SMTP-44D mitigated cell death, reactive oxygen species production, and inflammatory cytokine levels in the cells. These findings suggest that SMTP-44D exhibits significant antioxidant and anti-inflammatory effects, highlighting its potential as a therapeutic candidate for DR.</div></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"157 2","pages":"Pages 57-64"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S134786132400080X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness among working-age adults, and inflammation and oxidative stress contribute to DR development. However, no effective treatments are currently approved for DR. Therefore, this study aimed to investigate the effects of SMTP-44D—a Stachybotrys microspora-derived compound with anti-inflammatory and antioxidant properties—on DR in in vivo and in vitro models. Diabetes was induced in rats using 60 mg/kg streptozocin, followed by treatment with SMTP-44D every second day. Retinal function was assessed using electroretinography every 2 months for 8 months. SMTP-44D prevented diabetes-induced b-wave amplitude reductions in electroretinogram and decreased retinal ganglion cell apoptosis. SMTP-44D also reduced the accumulation of advanced glycation end-products (AGEs), AGE receptors, and 8-hydroxydeoxyguanosine in the retina. Furthermore, when rat retinal Müller cells were cultured in DMEM medium containing 35 mM glucose (high glucose, HG) and treated with SMTP-44D for 24 h, SMTP-44D mitigated cell death, reactive oxygen species production, and inflammatory cytokine levels in the cells. These findings suggest that SMTP-44D exhibits significant antioxidant and anti-inflammatory effects, highlighting its potential as a therapeutic candidate for DR.
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.