RosettaHDX: Predicting antibody-antigen interaction from hydrogen-deuterium exchange mass spectrometry data

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of structural biology Pub Date : 2025-01-05 DOI:10.1016/j.jsb.2025.108166
Minh H. Tran , Cristina E. Martina , Rocco Moretti , Marcus Nagel , Kevin L. Schey , Jens Meiler
{"title":"RosettaHDX: Predicting antibody-antigen interaction from hydrogen-deuterium exchange mass spectrometry data","authors":"Minh H. Tran ,&nbsp;Cristina E. Martina ,&nbsp;Rocco Moretti ,&nbsp;Marcus Nagel ,&nbsp;Kevin L. Schey ,&nbsp;Jens Meiler","doi":"10.1016/j.jsb.2025.108166","DOIUrl":null,"url":null,"abstract":"<div><div>High-throughput characterization of antibody-antigen complexes at the atomic level is critical for understanding antibody function and enabling therapeutic development. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) enables rapid epitope mapping, but its data are too sparse for independent structure determination. In this study, we introduce RosettaHDX, a hybrid method that combines computational docking with differential HDX-MS data to enhance the accuracy of antibody-antigen complex models beyond what either method can achieve individually. By incorporating HDX data as both distance restraints and a scoring term in the RosettaDock algorithm, RosettaHDX successfully generated near-native models (interface root-mean square deviation ≤ 4 Å) for all 9 benchmark complexes examined, averaging 3.6 times more near-native models than Rosetta alone. Near-native models among the top 10 scoring were identified in 3/9 cases, compared to 1/9 with Rosetta alone. Additionally, we developed a predictive metric based on docking results with HDX restraints to identify allosteric peptides in HDX datasets.</div></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":"217 1","pages":"Article 108166"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847725000012","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High-throughput characterization of antibody-antigen complexes at the atomic level is critical for understanding antibody function and enabling therapeutic development. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) enables rapid epitope mapping, but its data are too sparse for independent structure determination. In this study, we introduce RosettaHDX, a hybrid method that combines computational docking with differential HDX-MS data to enhance the accuracy of antibody-antigen complex models beyond what either method can achieve individually. By incorporating HDX data as both distance restraints and a scoring term in the RosettaDock algorithm, RosettaHDX successfully generated near-native models (interface root-mean square deviation ≤ 4 Å) for all 9 benchmark complexes examined, averaging 3.6 times more near-native models than Rosetta alone. Near-native models among the top 10 scoring were identified in 3/9 cases, compared to 1/9 with Rosetta alone. Additionally, we developed a predictive metric based on docking results with HDX restraints to identify allosteric peptides in HDX datasets.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RosettaHDX:从氢-氘交换质谱数据预测抗体-抗原相互作用。
在原子水平上对抗体-抗原复合物进行高通量表征对于理解抗体功能和促进治疗发展至关重要。氢-氘交换质谱(HDX-MS)可以快速定位表位,但其数据过于稀疏,无法独立确定结构。在本研究中,我们引入了RosettaHDX,这是一种混合方法,将计算对接与差分HDX-MS数据相结合,以提高抗体-抗原复合物模型的准确性,而不是单独使用任何一种方法。通过在RosettaDock算法中结合HDX数据作为距离约束和评分项,RosettaHDX成功地为所有9个基准测试组合生成了近本地模型(界面根均方差≤4 Å),平均近本地模型比Rosetta单独多3.6倍。在得分最高的10个模型中,有3/9的案例被识别出接近本地的模型,而单独使用Rosetta的案例只有1/9。此外,我们开发了一种基于HDX约束对接结果的预测指标,用于识别HDX数据集中的变构肽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of structural biology
Journal of structural biology 生物-生化与分子生物学
CiteScore
6.30
自引率
3.30%
发文量
88
审稿时长
65 days
期刊介绍: Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure. Techniques covered include: • Light microscopy including confocal microscopy • All types of electron microscopy • X-ray diffraction • Nuclear magnetic resonance • Scanning force microscopy, scanning probe microscopy, and tunneling microscopy • Digital image processing • Computational insights into structure
期刊最新文献
Computational Engineering of siderocalin to modulate its binding affinity to the antihypertension drug candesartan. Cryo-iCLEM: Cryo correlative light and electron microscopy with immersion objectives. Lack of embryonic skeletal muscle in mice leads to abnormal mineral deposition and growth. Computational identification of B and T-cell epitopes for designing a multi-epitope vaccine against SARS-CoV-2 spike glycoprotein. A computational approach to predict the effects of missense mutations on protein amyloidogenicity: A case study in hereditary transthyretin cardiomyopathy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1