Shunya Aoyagi, Zhan Su, Gouen Weng, Shoujie Ye, Fuyi Cao, Cong Wang, Xiaobo Hu, Yohei Yamamoto, Shaoqiang Chen
{"title":"Single-crystal CsPbBr<sub>3</sub>-based vertical cavity surface emitting laser.","authors":"Shunya Aoyagi, Zhan Su, Gouen Weng, Shoujie Ye, Fuyi Cao, Cong Wang, Xiaobo Hu, Yohei Yamamoto, Shaoqiang Chen","doi":"10.1364/OL.547212","DOIUrl":null,"url":null,"abstract":"<p><p>All-inorganic perovskite materials have been widely used in various devices, including lasers, light-emitting diodes (LEDs), and solar cells, due to their exceptional optoelectronic properties. Devices utilizing high-quality single crystals are anticipated to achieve significantly enhanced performance. In this work, we present a high-performance vertical cavity surface emitting laser (VCSEL) based on a single-crystal CsPbBr<sub>3</sub> microplatelet, fabricated through a simple solution process and sandwiched between two distributed Bragg reflector (DBRs). The VCSEL demonstrated single-mode lasing at 542 nm, a low threshold of 5 µJ/cm<sup>2</sup>, and a high Q-factor of 2893. Additionally, time-resolved photoluminescence (TRPL) measurements using a streak camera revealed picosecond-scale lasing dynamics. This study offers a novel, to the best of our knowledge, approach for realizing laser devices using perovskite single-crystal microplatelets.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 2","pages":"702-705"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.547212","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
All-inorganic perovskite materials have been widely used in various devices, including lasers, light-emitting diodes (LEDs), and solar cells, due to their exceptional optoelectronic properties. Devices utilizing high-quality single crystals are anticipated to achieve significantly enhanced performance. In this work, we present a high-performance vertical cavity surface emitting laser (VCSEL) based on a single-crystal CsPbBr3 microplatelet, fabricated through a simple solution process and sandwiched between two distributed Bragg reflector (DBRs). The VCSEL demonstrated single-mode lasing at 542 nm, a low threshold of 5 µJ/cm2, and a high Q-factor of 2893. Additionally, time-resolved photoluminescence (TRPL) measurements using a streak camera revealed picosecond-scale lasing dynamics. This study offers a novel, to the best of our knowledge, approach for realizing laser devices using perovskite single-crystal microplatelets.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.