Automated ultrasonography of hepatocellular carcinoma using discrete wavelet transform based deep-learning neural network.

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Medical image analysis Pub Date : 2025-01-04 DOI:10.1016/j.media.2025.103453
Se-Yeol Rhyou, Jae-Chern Yoo
{"title":"Automated ultrasonography of hepatocellular carcinoma using discrete wavelet transform based deep-learning neural network.","authors":"Se-Yeol Rhyou, Jae-Chern Yoo","doi":"10.1016/j.media.2025.103453","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces HCC-Net, a novel wavelet-based approach for the accurate diagnosis of hepatocellular carcinoma (HCC) from abdominal ultrasound (US) images using artificial neural networks. The HCC-Net integrates the discrete wavelet transform (DWT) to decompose US images into four sub-band images, a lesion detector for hierarchical lesion localization, and a pattern-augmented classifier for generating pattern-enhanced lesion images and subsequent classification. The lesion detection uses a hierarchical coarse-to-fine approach to minimize missed lesions. CoarseNet performs initial lesion localization, while FineNet identifies any lesions that were missed. In the classification phase, the wavelet components of detected lesions are synthesized to create pattern-augmented images that enhance feature distinction, resulting in highly accurate classifications. These augmented images are classified into 'Normal,' 'Benign,' or 'Malignant' categories according to their morphologic features on sonography. The experimental results demonstrate the significant effectiveness of the proposed coarse-to-fine detection framework and pattern-augmented classifier in lesion detection and classification. We achieved an accuracy of 96.2 %, a sensitivity of 97.6 %, and a specificity of 98.1 % on the Samsung Medical Center dataset, indicating HCC-Net's potential as a reliable tool for liver cancer screening.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103453"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2025.103453","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces HCC-Net, a novel wavelet-based approach for the accurate diagnosis of hepatocellular carcinoma (HCC) from abdominal ultrasound (US) images using artificial neural networks. The HCC-Net integrates the discrete wavelet transform (DWT) to decompose US images into four sub-band images, a lesion detector for hierarchical lesion localization, and a pattern-augmented classifier for generating pattern-enhanced lesion images and subsequent classification. The lesion detection uses a hierarchical coarse-to-fine approach to minimize missed lesions. CoarseNet performs initial lesion localization, while FineNet identifies any lesions that were missed. In the classification phase, the wavelet components of detected lesions are synthesized to create pattern-augmented images that enhance feature distinction, resulting in highly accurate classifications. These augmented images are classified into 'Normal,' 'Benign,' or 'Malignant' categories according to their morphologic features on sonography. The experimental results demonstrate the significant effectiveness of the proposed coarse-to-fine detection framework and pattern-augmented classifier in lesion detection and classification. We achieved an accuracy of 96.2 %, a sensitivity of 97.6 %, and a specificity of 98.1 % on the Samsung Medical Center dataset, indicating HCC-Net's potential as a reliable tool for liver cancer screening.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于离散小波变换的深度学习神经网络在肝癌超声诊断中的应用。
本研究介绍了HCC- net,一种新的基于小波的方法,用于使用人工神经网络从腹部超声(US)图像中准确诊断肝细胞癌(HCC)。HCC-Net集成了离散小波变换(DWT)将US图像分解为四个子带图像,一个用于分层病灶定位的病变检测器,以及一个用于生成模式增强病变图像并进行后续分类的模式增强分类器。病变检测采用分级粗到细的方法,以尽量减少遗漏的病变。CoarseNet进行初始病变定位,而FineNet识别任何遗漏的病变。在分类阶段,将检测到的病变的小波分量合成为增强特征区分的模式增强图像,从而获得高度准确的分类。根据超声图像的形态特征,这些增强图像被分为“正常”、“良性”或“恶性”三类。实验结果表明,本文提出的粗变细检测框架和模式增强分类器在损伤检测和分类方面具有显著的有效性。我们在三星医疗中心数据集上实现了96.2%的准确性,97.6%的敏感性和98.1%的特异性,表明HCC-Net有潜力成为肝癌筛查的可靠工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
期刊最新文献
Corrigendum to "Detection and analysis of cerebral aneurysms based on X-ray rotational angiography - the CADA 2020 challenge" [Medical Image Analysis, April 2022, Volume 77, 102333]. Editorial for Special Issue on Foundation Models for Medical Image Analysis. Few-shot medical image segmentation with high-fidelity prototypes. The Developing Human Connectome Project: A fast deep learning-based pipeline for neonatal cortical surface reconstruction. SAF-IS: A spatial annotation free framework for instance segmentation of surgical tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1