Benefit from public unlabeled data: A Frangi filter-based pretraining network for 3D cerebrovascular segmentation.

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Medical image analysis Pub Date : 2025-01-17 DOI:10.1016/j.media.2024.103442
Gen Shi, Hao Lu, Hui Hui, Jie Tian
{"title":"Benefit from public unlabeled data: A Frangi filter-based pretraining network for 3D cerebrovascular segmentation.","authors":"Gen Shi, Hao Lu, Hui Hui, Jie Tian","doi":"10.1016/j.media.2024.103442","DOIUrl":null,"url":null,"abstract":"<p><p>Precise cerebrovascular segmentation in Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) data is crucial for computer-aided clinical diagnosis. The sparse distribution of cerebrovascular structures within TOF-MRA images often results in high costs for manual data labeling. Leveraging unlabeled TOF-MRA data can significantly enhance model performance. In this study, we have constructed the largest preprocessed unlabeled TOF-MRA dataset to date, comprising 1510 subjects. Additionally, we provide manually annotated segmentation masks for 113 subjects based on existing external image datasets to facilitate evaluation. We propose a simple yet effective pretraining strategy utilizing the Frangi filter, known for its capability to enhance vessel-like structures, to optimize the use of the unlabeled data for 3D cerebrovascular segmentation. This involves a Frangi filter-based preprocessing workflow tailored for large-scale unlabeled datasets and a multi-task pretraining strategy to efficiently utilize the preprocessed data. This approach ensures maximal extraction of useful knowledge from the unlabeled data. The efficacy of the pretrained model is assessed across four cerebrovascular segmentation datasets, where it demonstrates superior performance, improving the clDice metric by approximately 2%-3% compared to the latest semi- and self-supervised methods. Additionally, ablation studies validate the generalizability and effectiveness of our pretraining method across various backbone structures. The code and data have been open source at: https://github.com/shigen-StoneRoot/FFPN.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103442"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2024.103442","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Precise cerebrovascular segmentation in Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) data is crucial for computer-aided clinical diagnosis. The sparse distribution of cerebrovascular structures within TOF-MRA images often results in high costs for manual data labeling. Leveraging unlabeled TOF-MRA data can significantly enhance model performance. In this study, we have constructed the largest preprocessed unlabeled TOF-MRA dataset to date, comprising 1510 subjects. Additionally, we provide manually annotated segmentation masks for 113 subjects based on existing external image datasets to facilitate evaluation. We propose a simple yet effective pretraining strategy utilizing the Frangi filter, known for its capability to enhance vessel-like structures, to optimize the use of the unlabeled data for 3D cerebrovascular segmentation. This involves a Frangi filter-based preprocessing workflow tailored for large-scale unlabeled datasets and a multi-task pretraining strategy to efficiently utilize the preprocessed data. This approach ensures maximal extraction of useful knowledge from the unlabeled data. The efficacy of the pretrained model is assessed across four cerebrovascular segmentation datasets, where it demonstrates superior performance, improving the clDice metric by approximately 2%-3% compared to the latest semi- and self-supervised methods. Additionally, ablation studies validate the generalizability and effectiveness of our pretraining method across various backbone structures. The code and data have been open source at: https://github.com/shigen-StoneRoot/FFPN.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受益于公共未标记数据:一种基于Frangi滤波器的三维脑血管分割预训练网络。
飞行时间磁共振血管成像(TOF-MRA)数据中精确的脑血管分割对计算机辅助临床诊断至关重要。脑血管结构在TOF-MRA图像中的稀疏分布往往导致人工数据标记成本高。利用未标记的TOF-MRA数据可以显著提高模型性能。在这项研究中,我们构建了迄今为止最大的预处理无标记TOF-MRA数据集,包括1510名受试者。此外,我们还基于现有的外部图像数据集为113个受试者提供了手动标注的分割掩码,以方便评估。我们提出了一种简单而有效的预训练策略,利用Frangi过滤器,以其增强血管样结构的能力而闻名,以优化未标记数据的3D脑血管分割的使用。这包括为大规模未标记数据集定制的基于Frangi滤波器的预处理工作流和多任务预训练策略,以有效利用预处理数据。这种方法确保从未标记的数据中最大限度地提取有用的知识。在四个脑血管分割数据集上对预训练模型的有效性进行了评估,在这些数据集上,它表现出了卓越的性能,与最新的半监督和自监督方法相比,clDice指标提高了约2%-3%。此外,消融研究验证了我们的预训练方法在各种骨干结构中的广泛性和有效性。代码和数据已在https://github.com/shigen-StoneRoot/FFPN上开放源代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
期刊最新文献
Corrigendum to "Detection and analysis of cerebral aneurysms based on X-ray rotational angiography - the CADA 2020 challenge" [Medical Image Analysis, April 2022, Volume 77, 102333]. Editorial for Special Issue on Foundation Models for Medical Image Analysis. Few-shot medical image segmentation with high-fidelity prototypes. The Developing Human Connectome Project: A fast deep learning-based pipeline for neonatal cortical surface reconstruction. Benefit from public unlabeled data: A Frangi filter-based pretraining network for 3D cerebrovascular segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1