Sophia Stock, Luisa Fertig, Vivien Doreen Menkhoff, Thaddäus Strzalkowski, Manuel Caruso, Sebastian Kobold
{"title":"Retrovirus-based manufacturing of chimeric antigen receptor-modified T cells for cancer therapy research.","authors":"Sophia Stock, Luisa Fertig, Vivien Doreen Menkhoff, Thaddäus Strzalkowski, Manuel Caruso, Sebastian Kobold","doi":"10.1016/bs.mcb.2024.10.017","DOIUrl":null,"url":null,"abstract":"<p><p>Treatment with autologous chimeric antigen receptor (CAR)-modified T cells can achieve outstanding clinical response rates in heavily pretreated patients with B and plasma cell malignancies. However, relapses occur, and they limit the efficacy of this promising treatment approach. The complex GMP-compliant production and high treatment costs cause that CAR T cells cannot yet be used in a broad population. Among others, CAR T cell therapy has evolved regarding vector design and manufacturing process. Optimal production of CAR T cells is not yet defined, far from being standardized. Quality, cellular composition and immunophenotype of the administered CAR T cells are influenced by the manufacturing protocol and therefore play a crucial role for therapeutic success. For the gene transfer, viral and non-viral strategies are available. Retrovirus-based protocols for CAR T cell production offer advantages in terms of stable gene integration, sufficient transduction efficiency, proven clinical success, and scalability. Here, we detail a retrovirus-based generation protocol of human CAR-modified T cells for experimental immunotherapeutic treatment of cancer cells. For the CAR generation, HEK-293-based packaging cell lines, CD3<sup>+</sup> selection, CD3/CD28-coated bead-based activation and IL-2/IL-15-mediated expansion were used. This protocol can be applied for every possible CAR construct after being successfully transfected in HEK-293-based packaging cell lines.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"191 ","pages":"329-352"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2024.10.017","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Treatment with autologous chimeric antigen receptor (CAR)-modified T cells can achieve outstanding clinical response rates in heavily pretreated patients with B and plasma cell malignancies. However, relapses occur, and they limit the efficacy of this promising treatment approach. The complex GMP-compliant production and high treatment costs cause that CAR T cells cannot yet be used in a broad population. Among others, CAR T cell therapy has evolved regarding vector design and manufacturing process. Optimal production of CAR T cells is not yet defined, far from being standardized. Quality, cellular composition and immunophenotype of the administered CAR T cells are influenced by the manufacturing protocol and therefore play a crucial role for therapeutic success. For the gene transfer, viral and non-viral strategies are available. Retrovirus-based protocols for CAR T cell production offer advantages in terms of stable gene integration, sufficient transduction efficiency, proven clinical success, and scalability. Here, we detail a retrovirus-based generation protocol of human CAR-modified T cells for experimental immunotherapeutic treatment of cancer cells. For the CAR generation, HEK-293-based packaging cell lines, CD3+ selection, CD3/CD28-coated bead-based activation and IL-2/IL-15-mediated expansion were used. This protocol can be applied for every possible CAR construct after being successfully transfected in HEK-293-based packaging cell lines.
期刊介绍:
For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.