Functional Imaging Methods for Investigating 3D Choroid Plexus Organoids.

Q4 Biochemistry, Genetics and Molecular Biology Methods in molecular biology Pub Date : 2025-01-17 DOI:10.1007/7651_2024_601
See Swee Tang, Elizabeth J Apsley, Laura Pellegrini
{"title":"Functional Imaging Methods for Investigating 3D Choroid Plexus Organoids.","authors":"See Swee Tang, Elizabeth J Apsley, Laura Pellegrini","doi":"10.1007/7651_2024_601","DOIUrl":null,"url":null,"abstract":"<p><p>The choroid plexus (ChP) is a vital brain structure that produces cerebrospinal fluid (CSF) and forms a selective barrier between the blood and CSF, essential for brain homeostasis. Composed of secretory epithelial cells, connective stroma, and a fenestrated vascular network, the ChP supports nutrient transport, immune surveillance, and the clearance of toxic by-products. Despite its significance in maintaining cerebral function, the mechanisms underlying its development and maturation remain poorly understood. Recent advancements, such as the creation of stem cell-derived three-dimensional (3D) ChP organoid model, provide a promising platform for studying these processes. The ChP organoid model replicates key developmental stages and functions of the ChP, including CSF secretion and barrier formation. Additionally, they offer unique opportunities to investigate the impacts of drugs, pathogens, and toxins on the blood-CSF barrier. This study highlights imaging techniques critical for the characterization and utilization of ChP organoids, illustrating their value in advancing our understanding of ChP biology and its role in health and disease.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The choroid plexus (ChP) is a vital brain structure that produces cerebrospinal fluid (CSF) and forms a selective barrier between the blood and CSF, essential for brain homeostasis. Composed of secretory epithelial cells, connective stroma, and a fenestrated vascular network, the ChP supports nutrient transport, immune surveillance, and the clearance of toxic by-products. Despite its significance in maintaining cerebral function, the mechanisms underlying its development and maturation remain poorly understood. Recent advancements, such as the creation of stem cell-derived three-dimensional (3D) ChP organoid model, provide a promising platform for studying these processes. The ChP organoid model replicates key developmental stages and functions of the ChP, including CSF secretion and barrier formation. Additionally, they offer unique opportunities to investigate the impacts of drugs, pathogens, and toxins on the blood-CSF barrier. This study highlights imaging techniques critical for the characterization and utilization of ChP organoids, illustrating their value in advancing our understanding of ChP biology and its role in health and disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维脉络膜丛类器官的功能成像方法研究。
脉络膜丛(ChP)是产生脑脊液(CSF)的重要脑结构,并在血液和CSF之间形成选择性屏障,对脑内稳态至关重要。ChP由分泌性上皮细胞、结缔组织基质和开窗血管网组成,支持营养物质运输、免疫监视和有毒副产物的清除。尽管它在维持大脑功能方面具有重要意义,但其发育和成熟的机制仍然知之甚少。最近的进展,如干细胞衍生的三维(3D) ChP类器官模型的创建,为研究这些过程提供了一个有希望的平台。ChP类器官模型复制了ChP的关键发育阶段和功能,包括脑脊液分泌和屏障形成。此外,它们为研究药物、病原体和毒素对血- csf屏障的影响提供了独特的机会。本研究强调了成像技术对热电联产类器官的表征和利用至关重要,说明了它们在促进我们对热电联产生物学及其在健康和疾病中的作用的理解方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
期刊最新文献
Generation and Characterization of a New Aging Skin Human Dermal Extracellular Matrix Scaffold. A Protocol for Detecting DNA Methylation Changes at CpG Sites of Stemness-Related Genes in Aging Stem Cells. Reproducible, Scale-Up Production of Human Brain Organoids (HBOs) on a Pillar Plate Platform via Spheroid Transfer. Reproducible, Scale-Up Production of Human Liver Organoids (HLOs) on a Pillar Plate Platform via Microarray 3D Bioprinting. RNA Interference Approaches to Study Epidermal Cell Adhesion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1