Ramona Rudalska, Jule Harbig, Michael Forster, Pascal Woelffing, Aylin Esposito, Mark Kudolo, Adelina Botezatu, Vanessa Haller, Nicole Janssen, Samuel Holzmayer, Philipp Nahidino, Omelyan Trompak, Tatu Pantsar, Thales Kronenberger, Can Yurttas, Elke Rist, Alexander N R Weber, Marc H Dahlke, German Ott, Alfred Koenigsrainer, Ulrich Rothbauer, Melanie Maerklin, Thomas Muerdter, Matthias Schwab, Stephan Singer, Lars Zender, Stefan Laufer, Daniel Dauch
{"title":"First-in-class ultralong-target-residence-time p38α inhibitors as a mitosis-targeted therapy for colorectal cancer.","authors":"Ramona Rudalska, Jule Harbig, Michael Forster, Pascal Woelffing, Aylin Esposito, Mark Kudolo, Adelina Botezatu, Vanessa Haller, Nicole Janssen, Samuel Holzmayer, Philipp Nahidino, Omelyan Trompak, Tatu Pantsar, Thales Kronenberger, Can Yurttas, Elke Rist, Alexander N R Weber, Marc H Dahlke, German Ott, Alfred Koenigsrainer, Ulrich Rothbauer, Melanie Maerklin, Thomas Muerdter, Matthias Schwab, Stephan Singer, Lars Zender, Stefan Laufer, Daniel Dauch","doi":"10.1038/s43018-024-00899-7","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) constitutes the second leading cause of cancer-related death worldwide and advanced CRCs are resistant to targeted therapies, chemotherapies and immunotherapies. p38α (Mapk14) has been suggested as a therapeutic target in CRC; however, available p38α inhibitors only allow for insufficient target inhibition. Here we describe a unique class of p38α inhibitors with ultralong target residence times (designated ULTR-p38i) that robustly inhibit p38α downstream signaling and induce distinct biological phenotypes. ULTR-p38i monotherapy triggers an uncontrolled mitotic entry by activating Cdc25 and simultaneously blocking Wee1. Consequently, CRC cells undergo mitotic catastrophe, resulting in apoptosis or senescence. ULTR-p38i exhibit high selectivity, good pharmaco-kinetic properties and no measurable toxicity with strong therapeutic effects in patient-derived CRC organoids and syngeneic CRC mouse models. Conceptually, our study suggests ultralong-target-residence-time kinase inhibitors as an alternative to covalent inhibitors, which, because of the lack of cysteine residues, cannot be generated for many kinase cancer targets.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":""},"PeriodicalIF":23.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-024-00899-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC) constitutes the second leading cause of cancer-related death worldwide and advanced CRCs are resistant to targeted therapies, chemotherapies and immunotherapies. p38α (Mapk14) has been suggested as a therapeutic target in CRC; however, available p38α inhibitors only allow for insufficient target inhibition. Here we describe a unique class of p38α inhibitors with ultralong target residence times (designated ULTR-p38i) that robustly inhibit p38α downstream signaling and induce distinct biological phenotypes. ULTR-p38i monotherapy triggers an uncontrolled mitotic entry by activating Cdc25 and simultaneously blocking Wee1. Consequently, CRC cells undergo mitotic catastrophe, resulting in apoptosis or senescence. ULTR-p38i exhibit high selectivity, good pharmaco-kinetic properties and no measurable toxicity with strong therapeutic effects in patient-derived CRC organoids and syngeneic CRC mouse models. Conceptually, our study suggests ultralong-target-residence-time kinase inhibitors as an alternative to covalent inhibitors, which, because of the lack of cysteine residues, cannot be generated for many kinase cancer targets.
期刊介绍:
Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates.
Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale.
In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.